Next |
Prev |
Up |
Top
|
Index |
JOS Index |
JOS Pubs |
JOS Home |
Search
Now gather all of the constraints to form an LP problem:
![\begin{displaymath}\begin{array}[t]{ll} \mathrm{minimize} & \left[\begin{array}{cccc} 0 & \cdots & 0 & 1\end{array} \right] \left[\begin{array}{c} h\\ \delta \end{array} \right]\\ [5pt] \mbox{subject to} & \begin{array}[t]{l} \left[\begin{array}{cc} d\left(0\right)^{T} & 0\end{array} \right]\left[\begin{array}{c} h\\ \delta \end{array} \right]=1\\ \left[\begin{array}{c} \left[\begin{array}{cc} -\mathbf{I} & \mathbf{0}\end{array} \right]\\ [5pt] \mathbf{A}_{sb}\end{array} \right]\left[\begin{array}{c} h\\ \delta \end{array} \right]\le \mathbf{0}\end{array} \end{array}\end{displaymath}](img613.png) |
(4.75) |
where the optimization variables are
.
Solving this linear-programming problem should produce a window that
is optimal in the Chebyshev sense over the chosen frequency samples,
as shown in Fig.3.37. If the chosen frequency
samples happen to include all of the extremal frequencies
(frequencies of maximum error in the DTFT of the window),
then the unique Chebyshev window for the specified main-lobe
width must be obtained. Iterating to find the extremal frequencies is
the heart of the Remez multiple exchange algorithm, discussed in the
next section.
Figure 3.37:
Normal
Chebyshev Window
![\includegraphics[width=\twidth,height=6.5in]{eps/print_normal_chebwin}](img615.png) |
Next |
Prev |
Up |
Top
|
Index |
JOS Index |
JOS Pubs |
JOS Home |
Search
[How to cite this work] [Order a printed hardcopy] [Comment on this page via email]