Next |
Prev |
Up |
Top
|
Index |
JOS Index |
JOS Pubs |
JOS Home |
Search
% Specify formant resonances for an "ah" [a] vowel:
F = [700, 1220, 2600]; % Formant frequencies in Hz
B = [130, 70, 160]; % Formant bandwidths in Hz
fs = 8192; % Sampling rate in Hz
% ("telephone quality" for speed)
R = exp(-pi*B/fs); % Pole radii
theta = 2*pi*F/fs; % Pole angles
poles = R .* exp(j*theta);
[B,A] = zp2tf(0,[poles,conj(poles)],1);
f0 = 200; % Fundamental frequency in Hz
w0T = 2*pi*f0/fs;
nharm = floor((fs/2)/f0); % number of harmonics
nsamps = fs; % make a second's worth
sig = zeros(1,nsamps);
n = 0:(nsamps-1);
% Synthesize bandlimited impulse train:
for i=1:nharm,
sig = sig + cos(i*w0T*n);
end;
sig = sig/max(sig);
soundsc(sig,fs); % Let's hear it
% Now compute the speech vowel:
speech = filter(1,A,sig);
soundsc([sig,speech],fs); % "buzz", "ahh"
% (it would sound much better with a little vibrato)
The Hamming-windowed bandlimited impulse train sig and its
spectrum are plotted in Fig.10.1.
Figure 10.1:
Bandlimited impulse train.
![\includegraphics[width=\textwidth ]{eps/ImpulseTrain}](img1775.png) |
Figure 10.2 shows the Hamming-windowed synthesized vowel
speech, and its spectrum overlaid with the true formant
envelope.
Figure 10.2:
Synthetic vowel in time
and frequency domains, with formant envelope overlaid.
![\includegraphics[width=\textwidth ]{eps/Speech}](img1776.png) |
Next |
Prev |
Up |
Top
|
Index |
JOS Index |
JOS Pubs |
JOS Home |
Search
[How to cite this work] [Order a printed hardcopy] [Comment on this page via email]