Next |
Prev |
Up |
Top
|
Index |
JOS Index |
JOS Pubs |
JOS Home |
Search
Stretch/Repeat (Scaling) Theorem
Using these definitions, we can compactly state the stretch
theorem:
 |
(3.31) |
Proof:
As
traverses the interval
,
traverses the unit circle
times, thus implementing the repeat
operation on the unit circle. Note also that when
, we have
, so that dc always maps to dc. At half the sampling
rate
, on the other hand, after the mapping, we may have
either
(
odd), or
(
even), where
.
The stretch theorem makes it clear how to do
ideal sampling-rate conversion for integer upsampling ratios
:
We first stretch the signal by the factor
(introducing
zeros
between each pair of samples), followed by an ideal lowpass
filter cutting off at
. That is, the filter has a gain of 1
for
, and a gain of 0 for
. Such a system (if it were realizable) implements ideal bandlimited interpolation of the original signal by the factor
.
The stretch theorem is analogous to the scaling theorem for
continuous Fourier transforms (introduced in §2.4.1
below).
Next |
Prev |
Up |
Top
|
Index |
JOS Index |
JOS Pubs |
JOS Home |
Search
[How to cite this work] [Order a printed hardcopy] [Comment on this page via email]