Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 11056 publications
Preview abstract
For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step.
View details
Preview abstract
How many T gates are needed to approximate an arbitrary n-qubit quantum state to within
a given precision ϵ? Improving prior work of Low, Kliuchnikov and Schaeffer, we show that the
optimal asymptotic scaling is Θ(sqrt{2^n log(1/ε)} + log(1/ε)) if we allow an unlimited number of ancilla qubits. We also show that this is the optimal T-count for implementing an arbitrary
diagonal n-qubit unitary to within error ϵ. We describe an application to batched synthesis of
single-qubit unitaries: we can approximate a tensor product of m = O(log log(1/ϵ)) arbitrary
single-qubit unitaries to within error ϵ with the same asymptotic T-count as is required to
approximate just one single-qubit unitary.
View details
Preview abstract
Semantic data models express high-level business concepts and metrics, capturing the business logic needed to query a database correctly. Most data modeling solutions are built as layers above SQL query engines, with bespoke query languages or APIs. The layered approach means that semantic models can’t be used directly in SQL queries. This paper focuses on an open problem in this space – can we define semantic models in SQL, and make them naturally queryable in SQL?
In parallel, graph query is becoming increasingly popular, including in SQL. SQL/PGQ extends SQL with an embedded subset of the GQL graph query language, adding property graph views and making graph traversal queries easy.
We explore a surprising connection: semantic data models are graphs, and defining graphs is a data modeling problem. In both domains, users start by defining a graph model, and need query language support to easily traverse edges in the graph, which means doing joins in the underlying data.
We propose some useful SQL extensions that make it easier to use higher-level data model abstractions in queries. Users can define a “semantic data graph” view of their data, encapsulating the complex business logic required to query the underlying tables correctly. Then they can query that semantic graph model easily with SQL.
Our SQL extensions are useful independently, simplifying many queries – particularly, queries with joins. We make declared foreign key relationships usable for joins at query time – a feature that seems obvious but is notably missing in standard SQL.
In combination, these extensions provide a practical approach to extend SQL incrementally, bringing semantic modeling and graph query together with the relational model and SQL.
View details
CrossCheck: Input Validation for WAN Control Systems
Rishabh Iyer
Isaac Keslassy
Sylvia Ratnasamy
Networked Systems Design and Implementation (NSDI) (2026) (to appear)
Preview abstract
We present CrossCheck, a system that validates inputs to the Software-Defined Networking (SDN) controller in a Wide Area Network (WAN). By detecting incorrect inputs—often stemming from bugs in the SDN control infrastructure—CrossCheck alerts operators before they trigger network outages.
Our analysis at a large-scale WAN operator identifies invalid inputs as a leading cause of major outages, and we show how CrossCheck would have prevented those incidents. We deployed CrossCheck as a shadow validation system for four weeks in a production WAN, during which it accurately detected the single incident of invalid inputs that occurred while sustaining a 0% false positive rate under normal operation, hence imposing little additional burden on operators. In addition, we show through simulation that CrossCheck reliably detects a wide range of invalid inputs (e.g., detecting demand perturbations as small as 5% with 100% accuracy) and maintains a near-zero false positive rate for realistic levels of noisy, missing, or buggy telemetry data (e.g., sustaining zero false positives with up to 30% of corrupted telemetry data).
View details
Preview abstract
AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization.
View details
Optimization by Decoded Quantum Interfereometry
Stephen Jordan
Mary Wootters
Alexander Schmidhuber
Robbie King
Sergei Isakov
Nature, 646 (2025), pp. 831-836
Preview abstract
Achieving superpolynomial speed-ups for optimization has long been a central goal for quantum algorithms. Here we introduce decoded quantum interferometry (DQI), a quantum algorithm that uses the quantum Fourier transform to reduce optimization problems to decoding problems. When approximating optimal polynomial fits over finite fields, DQI achieves a superpolynomial speed-up over known classical algorithms. The speed-up arises because the algebraic structure of the problem is reflected in the decoding problem, which can be solved efficiently. We then investigate whether this approach can achieve a speed-up for optimization problems that lack an algebraic structure but have sparse clauses. These problems reduce to decoding low-density parity-check codes, for which powerful decoders are known. To test this, we construct a max-XORSAT instance for which DQI finds an approximate optimum substantially faster than general-purpose classical heuristics, such as simulated annealing. Although a tailored classical solver can outperform DQI on this instance, our results establish that combining quantum Fourier transforms with powerful decoding primitives provides a promising new path towards quantum speed-ups for hard optimization problems.
View details
How to deal w___ missing input data
Martin Gauch
Frederik Kratzert
Daniel Klotz
Hydrology and Earth System Sciences, 29 (2025), pp. 6221-6235
Preview abstract
Deep learning hydrologic models have made their way from research to applications. More and more national hydrometeorological agencies, hydro power operators, and engineering consulting companies are building Long Short-Term Memory (LSTM) models for operational use cases. All of these efforts come across similar sets of challenges – challenges that are different from those in controlled scientific studies. In this paper, we tackle one of these issues: how to deal with missing input data? Operational systems depend on the real-time availability of various data products – most notably, meteorological forcings. The more external dependencies a model has, however, the more likely it is to experience an outage in one of them. We introduce and compare three different solutions that can generate predictions even when some of the meteorological input data do not arrive in time, or not arrive at all: First, input replacing, which imputes missing values with a fixed number; second, masked mean, which averages embeddings of the forcings that are available at a given time step; third, attention, a generalization of the masked mean mechanism that dynamically weights the embeddings. We compare the approaches in different missing data scenarios and find that, by a small margin, the masked mean approach tends to perform best.
View details
Preview abstract
Growing number of recommendable items (# of movies, music, products).
Sample negative items to overcome computational cost of training on full set of negative items.
Rank is computed based on sample.
View details
Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models
Lynn Chua
Yangsibo Huang
Pritish Kamath
Amer Sinha
Chulin Xie
Chiyuan Zhang
COLM (2025)
Preview abstract
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora. But can these models relate corresponding concepts across languages, i.e., be crosslingual? This study evaluates state-of-the-art LLMs on inherently crosslingual tasks. We observe that while these models show promising surface-level crosslingual abilities on machine translation and embedding space analyses, they struggle with deeper crosslingual knowledge transfer, revealing a crosslingual knowledge barrier in both general (MMLU benchmark) and domain-specific (Harry Potter quiz and TOFU benchmark) contexts. Since simple inference-time mitigation methods offer only limited improvement, we propose fine-tuning of LLMs on mixed-language data, which effectively reduces these gaps, even when using out-of-domain datasets like WikiText. Our findings suggest the need for explicit optimization to unlock the full crosslingual potential of LLMs. Our code is available at https://github.com/google-research/crosslingual-knowledge-barriers.
View details
Zero-Shot Mono-to-Binaural Speech Synthesis
Alon Levkovitch
Nadav Bar
Bastiaan Kleijn
Interspeech (2025), pp. 4168-4172
Preview abstract
We present ZeroBAS, a neural method to synthesize binaural speech from monaural speech recordings and positional information without training on any binaural data. To our knowledge, this is the first published zero-shot neural approach to mono-to-binaural speech synthesis. Specifically, we show that a parameter-free geometric time warping and amplitude scaling based on source location suffices to get an initial binaural synthesis that can be refined by iteratively applying a pretrained denoising vocoder. Furthermore, we find this leads to generalization across room conditions, which we measure by introducing a new dataset, TUT Mono-to-Binaural, to evaluate state-of-the-art monaural-to-binaural synthesis methods on unseen conditions. Our zero-shot method is perceptually on-par with the performance of supervised methods on previous standard mono-to-binaural dataset, and even surpasses them on our out-of-distribution TUT Mono-to-Binaural dataset.
View details
Multi-Agent Combinatorial Contracts
Paul Duetting
Tomer Ezra
Michal Feldman
Thomas Kesselheim
Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2025), pp. 1857 - 1891
Preview abstract
Combinatorial contracts are emerging as a key paradigm in algorithmic contract design, paralleling the role of combinatorial auctions in algorithmic mechanism design. In this paper we study natural combinatorial contract settings involving teams of agents, each capable of performing multiple actions. This scenario extends two fundamental special cases previously examined in the literature, namely the single-agent combinatorial action model of [Duetting et al., 2021] and the multi-agent binary-action model of [Babaioff et al., 2012, Duetting et al., 2023].
We study the algorithmic and computational aspects of these settings, highlighting the unique challenges posed by the absence of certain monotonicity properties essential for analyzing the previous special cases. To navigate these complexities, we introduce a broad set of novel tools that deepen our understanding of combinatorial contracts environments and yield good approximation guarantees.
Our main result is a constant-factor approximation for submodular multi-agent multi-action problems with value and demand oracles access. This result is tight: we show that this problem admits no PTAS (even under binary actions). As a side product of our main result, we devise an FPTAS, with value and demand oracles, for single-agent combinatorial action scenarios with general reward functions, which is of independent interest. We also provide bounds on the gap between the optimal welfare and the principal's utility. We show that, for subadditive rewards, perhaps surprisingly, this gap scales only logarithmically (rather than linearly) in the size of the action space.
View details
Circadian rhythm of heart rate and activity: a cross-sectional study
Maryam Khalid
Logan Schneider
Aravind Natarajan
Conor Heneghan
Karla Gleichauf
Chronobiology International (2025)
Preview abstract
ABSTRACT
Background: Circadian rhythms are commonly observed in a number of physiological processes. Consumer wearable devices have made it possible to obtain continuous time series data from a large number of individuals. We study circadian rhythms from measurements of heart rate, movement, and sleep, from a cohort of nearly 20,000 participants over the course of 30 days.
Methods: Participation was restricted to Fitbit users of age 21 years or older residing in the United States or Canada. Participants were enrolled through a recruitment banner shown on the Fitbit App. The advertisement was shown to 531,359 Fitbit users, and 23,239 enrolled in the program. Of these, we obtained heart rate data from 19,350 participants. We obtain the underlying circadian rhythm from time series heart rate by modeling the circadian rhythm as a sum over the first two Fourier harmonics. The first Fourier harmonic accounts for the 24-hour rhythmicity, while the second harmonic accounts for non-sinusoidal perturbations.
Findings: We observe a circadian rhythm in both heart rate and acceleration. From the diurnal modulation, we obtain the following circadian parameters: (i) amplitude of modulation, (ii) bathyphase, (iii) acrophase, (iv) non-sinusoidal fraction, and (v) fraction of day when the heart rate is greater than the mean. The amplitude, bathyphase, and acrophase depend on sex, and decrease with age. The waketime on average, follows the bathyphase by 2.4 hours. In most individuals, the circadian rhythm of heart rate lags the circadian rhythm of activity.
Interpretation: Circadian metrics for heart rate and activity can be reliably obtained from commercially available wearable devices. Distributions of circadian metrics can be valuable tools for individual-level interpretation.
View details
A Strategic Framework for AI Product Development and Evaluation in Enterprise Software
International Journal of Computer Engineering and Technology (IJCET), Volume 16, Issue 1 (2025)
Preview abstract
This article presents a comprehensive framework for developing and evaluating AI products in enterprise software systems, addressing the critical challenges organizations face during AI transformation initiatives. The article introduces a structured approach to decision-making for AI integration, encompassing ROI evaluation, user value assessment, and business impact analysis. It establishes distinct methodologies for both assistive and autonomous AI systems, providing detailed metrics for measuring success and performance across different implementation scenarios. Across various industries, the framework has shown potential in reducing implementation time, increasing user adoption rates, and enhancing overall project success rates, highlighting its practical applicability. The article methodology combines theoretical analysis with practical case studies, resulting in a flexible yet robust framework that can adapt to various organizational contexts. The framework's primary contribution lies in its practical approach to bridging the gap between theoretical AI capabilities and real-world implementation challenges, offering product leaders a systematic methodology for AI product development and evaluation. By addressing both current implementation challenges and future scalability requirements, this framework provides organizations with a foundational tool for navigating their AI transformation journey while maintaining a focus on measurable business outcomes and user value creation.
View details
Escaping Collapse: The Strength of Weak Data for Large Language Model Training
Sara Babakniya
Advances in Neural Information Processing Systems 38 (NeurIPS 2025)
Preview abstract
Synthetically-generated data plays an increasingly larger role in training large language models. However, while synthetic data has been found to be useful, studies have also shown that without proper curation it can cause LLM performance to plateau, or even "collapse", after many training iterations. In this paper, we formalize this question and develop a theoretical framework to investigate how much curation is needed in order to ensure that LLM performance continually improves. Our analysis is inspired by boosting, a classic machine
learning technique that leverages a very weak learning algorithm to produce an arbitrarily good classifier. The approach we analyze subsumes many recently proposed methods for training LLMs on synthetic data, and thus our analysis sheds light on why they are successful, and also suggests opportunities for future improvement. We present experiments that validate our theory, and show that dynamically focusing labeling resources on the most challenging examples --- in much the same way that boosting focuses the efforts of the weak learner --- leads to improved performance.
View details
HueManity: Probing Fine-Grained Visual Perception in MLLMs
Rynaa Grover
Jayant Tamarapalli
Sahiti Yerramilli
Nilay Pande
arXiv preprint arXiv:2506.03194 (2025)
Preview abstract
Multimodal Large Language Models (MLLMs) excel at high-level visual reasoning, but their performance on nuanced perceptual tasks remains surprisingly limited. We present HueManity, a benchmark designed to assess visual perception in MLLMs. The dataset comprises 83,850 images featuring two-character alphanumeric strings embedded in Ishihara test style dot patterns, challenging models on precise pattern recognition. Our evaluation of nine state-of-the-art MLLMs on HueManity demonstrates a significant performance deficit compared to human and traditional computer vision baselines. The best-performing MLLM achieved a 33.6% accuracy on the numeric "easy" task and a striking 3% on the alphanumeric "hard" task. In contrast, human participants achieved near-perfect scores (100% and 95.6%), and a fine-tuned ResNet50 model reached accuracies of 96.5% and 94.5%. These results highlight a critical gap in the visual capabilities of current MLLMs. Our analysis further explores potential architectural and training-paradigm factors contributing to this perceptual gap in MLLMs. We will open-source HueManity dataset and code to foster further research in improving perceptual robustness of MLLMs.
View details