Sari la conținut

Viscozitate: Diferență între versiuni

De la Wikipedia, enciclopedia liberă
Conținut șters Conținut adăugat
Fără descriere a modificării
O definiție după Lexicon
 
(Nu s-au afișat 26 de versiuni intermediare efectuate de alți 16 utilizatori)
Linia 1: Linia 1:
[[File:09. Вискозност на течности.ogv|thumb|right|upright=1.3|Experiment ce ilustrează viscozitatea unui fluid, adică frecarea internă. Prin țeavă curge glicerină. Partea inferioară a glicerinei este colorată pentru a face efectul vizibil. De-a lungul axei, glicerina curge cu viteza cea mai mare, deci frecarea internă este minimă. Mai departe de axă, frecarea internă crește, și viteza este mai mică. Se poate vedea prin suprafața de contact curbată între glicerina colorată și cea transparentă.]]
'''Viscozitatea''' este proprietatea unui [[fluid]] de a se opune mișcării relative a particulelor constituente<ref name="MIT86">Bazil Popa ș.a. ''Manualul inginerului termotehnician'', vol I, [[Editura Tehnică]], București, 1984</ref>. Viscozitatea este percepută ca o [[rezistență]] la curgere. În acest sens, apa, cu viscozitate mică, este ''fluidă'', în timp ce uleiul, cu viscozitate mare, este ''vâscos''. Toate fluidele reale sunt vâscoase, cu excepția celor [[superfluid]]e. Un fluid nevâscos este considerat ''fluid ideal''.
'''Viscozitatea''' este proprietatea unui [[fluid]] de a se opune mișcării relative a particulelor constituente<ref name="MIT86">[[Bazil Popa]] ș.a. ''Manualul inginerului termotehnician'', vol I, [[Editura Tehnică]], București, 1984</ref>. Viscozitatea este percepută ca o [[rezistență]] la curgere. În acest sens, apa, cu viscozitate mică, este ''fluidă'', în timp ce uleiul, cu viscozitate mare, este ''viscos''. Toate fluidele reale sunt viscoase, cu excepția celor [[superfluid]]e. Un fluid neviscos este considerat ''[[fluid ideal]]''. Viscozitatea este un termen sinonim cu ''frecarea internă'' și reprezintă fenomenul ce apare la orice fluid în mișcare, datorită frecării dintre straturile de fluid care se deplasează cu viteze diferite.<ref>''Lexicon de termodinamică și mașini termice''. Vol. IV. Autori: Dan Ștefănescu, Dragoș Sfințeanu, Mircea Marinescu, Ioan Ganea, Stoian Petrescu. Editura Tehnică, București, 1991</ref>


Cuvântul ''viscozitate'' face parte din familia cuvântului ''vâscos'' și în limba română este admisă și pronunția ca atare. Conform [[Ortografia limbii române|normelor ortografice]] actuale, termenul ar trebui ortografiat ''vâscozitate''. Această formă este în conflict cu radicalul ''visc-'' din care derivă familia de cuvinte <ref name="DEX">[[Academia Română]], Institutul de Lingvistică „[[Iorgu Iordan]]” ''[[Dicționarul explicativ al limbii române]] (DEX)'', [[Editura Univers Enciclopedic]], [[1998]]</ref>, și se abate de la termenul internațional. Ca urmare, în textele scrise se recomandă folosirea formei ''viscozitate'', prezentă în toate dicționarele și în toate lucrările tehnice.
Cuvântul ''viscozitate'' face parte din familia cuvântului ''vâscos'' și în limba română este admisă și pronunția ca atare. Conform [[Ortografia limbii române|normelor ortografice]] actuale, termenul ar trebui ortografiat ''vâscozitate''. Această formă este în conflict cu radicalul ''visc-'' din care derivă familia de cuvinte <ref name="DEX">[[Academia Română]], Institutul de Lingvistică „[[Iorgu Iordan]]” ''[[Dicționarul explicativ al limbii române]] (DEX)'', [[Editura Univers Enciclopedic]], [[1998]]</ref>, și se abate de la termenul internațional. Ca urmare, în textele scrise se recomandă folosirea formei ''viscozitate'', prezentă în toate dicționarele și în toate lucrările tehnice.

Viscozitatea dinamică variază de obicei puțin cu [[presiune]]a, dar destul de mult cu [[temperatura]]. De aceea este necesară și menționarea temperaturii pentru care este dată viscozitatea. În cazul în care densitatea fluidului depinde și ea de presiune și temperatură, viscozitatea cinematică variază mult cu acești parametri, care trebuie precizați. La suspensii viscozitatea variaza cu [[procent volumic|procentul volumic]] al particulelor dispersate.

Fluidele pentru care ipoteza lui Newton este valabilă (de exemplu [[apă|apa]], [[gaz]]ele) se numesc ''[[Fluid newtonian|fluide newtoniene]]''. Ipoteza simplă a lui Newton nu este valabilă pentru toate fluidele. Fluidele pentru care ipoteza lui Newton nu este valabilă se numesc ''[[Fluid nenewtonian|fluide nenewtoniene]]''. Cu studiul comportării fluidelor din punct de vedere al viscozității se ocupă [[reologie|reologia]].


== Definire - legea lui Newton ==
== Definire - legea lui Newton ==
[[Fișier:Experienta lui Newton.png|thumb|right|250px]]
[[Isaac Newton]] a postulat că pentru o curgere uniformă între două plăci plane paralele în mișcare ([[curgere Couette]]), tensiunea tangențială '''''τ''''' între două straturi de fluid este proporțională cu [[gradient]]ul [[viteză|vitezei]] ∂''u''/∂''y'' în direcția perpendiculară pe straturi.<ref name="LTR">* [[Remus Răduleț|Răduleț, R.]] și colab. ''[[Lexiconul Tehnic Român]]'', [[Editura Tehnică]], București, 1957-1966.</ref>
[[Isaac Newton]] a postulat că pentru o curgere uniformă între două plăci plane paralele în mișcare ([[curgere Couette]]), [[tensiune tangențială |tensiunea tangențială]] '''''τ''''' între două straturi de fluid este proporțională cu [[gradient]]ul [[viteză|vitezei]] ∂''u''/∂''y'' în direcția perpendiculară pe straturi.<ref name="LTR">* [[Remus Răduleț|Răduleț, R.]] și colab. ''[[Lexiconul Tehnic Român]]'', [[Editura Tehnică]], București, 1957-1966.</ref>
:<math>\tau=\eta \frac{\partial u}{\partial y}</math>.
:<math>\tau=\eta \frac{\partial u}{\partial y}</math>.


Pentru aceasta, a considerat tensiunile tangențiale care apar datorită frecării între suprafețele de separație ale straturilor de fluid care se deplasează cu viteze diferite.
Coeficientul <math>\eta</math> este o [[proprietate fizică]] a fluidului, numită '''viscozitate dinamică'''.
Astfel, interacțiunea dintre particulele situate de o parte și de alta a unei suprafețe de separație se manifestă prin tensiuni normale și tangențiale.
Dacă un fluid este aflat între două plăci plane paralele aflate între ele la distanța ''h'', se poate considera placa inferioară P<sub>1</sub> fixă iar cea superioară P<sub>2</sub> că se deplasează cu viteza constantă <math> \vec V. </math>

Fluidul poate fi asimilat unei serii de straturi subțiri și astfel dacă stratul 1 (datorită aderării la placa mobilă P<sub>2</sub>) se deplasează cu viteza <math> \vec V, </math> după un scurt interval de timp, stratul 2 aflat în vecinătate, se pune în mișcare cu o viteză mai mică, <math> \vec V- \Delta \vec V. </math>
Fenomenul se datorează existenței între straturile 1 și 2 a unei tensiuni tangențiale <math> \tau, </math> care duce la antrenarea în mișcare a stratului 2, aflat la momentul inițial în repaus.
În mod similar, stratul 2 antrenează stratul 3, în timp ce acesta la rândul său acționează asupra stratului 2, în sensul frânării.
S-a constatat că un strat oarecare de fluid accelerează stratul adiacent care are o viteză mai mică și frânează pe cel care are o viteză mai mare prin intermediul tensiunilor tangențiale.
Fenomenul se manifestă în întregul fluid, până la ultimul strat considerat, a cărui viteză este nulă datorită aderării la placa fixă P<sub>1</sub>.
[[Fișier:Tensiunea tangentială în funcţie de gradientul vitezei.png|thumb|right|250px|Variația tensiunii tangențiale în funcție de gradientul vitezei]]
Prin acest experiment [[Isaac Newton]] a ajuns la concluzia că valoarea tensiunii tangențiale este proporțională cu modulul vitezei ''V'' de deplasare a plăcii superioare și invers proporțională cu distanța dintre plăci:

::::<math> \tau = \eta \frac Vh, </math>

unde coeficientul <math>\eta</math> este o [[proprietate fizică]] a fluidului, numită '''viscozitate dinamică'''.


Raportul dintre viscozitatea dinamică și [[densitate]]a <math>{\rho}</math> a fluidului:
Raportul dintre viscozitatea dinamică și [[densitate]]a <math>{\rho}</math> a fluidului:
:<math>\nu= \frac{\eta }{\rho} \,</math>
:<math>\nu= \frac{\eta }{\rho} \,</math>
se numește '''viscozitate cinematică'''.
se numește '''viscozitate cinematică'''.

Viscozitatea dinamică variază de obicei puțin cu [[presiune]]a, dar destul de mult cu [[temperatura]]. De aceea este necesară și menționarea temperaturii pentru care este dată viscozitatea. În cazul în care densitatea fluidului depinde și ea de presiune și temperatură, viscozitatea cinematică variază mult cu acești parametri, care trebuie precizați. La suspensii viscozitatea variaza cu [[procent volumic|procentul volumic]] al particulelor dispersate.

Fluidele pentru care ipoteza lui Newton este valabilă (de exemplu [[apă|apa]], [[gaz]]ele) se numesc ''fluide newtoniene''. Ipoteza simplă a lui Newton nu este valabilă pentru toate fluidele. Fluidele pentru care ipoteza lui Newton nu este valabilă se numesc ''fluide nenewtoniene''. Cu studiul comportării fluidelor din punct de vedere al viscozității se ocupă [[reologie|reologia]].


== Măsurarea viscozității ==
== Măsurarea viscozității ==
Linia 44: Linia 60:
În [[SI|Sistemul Internațional]] unitatea de măsură a viscozității cinematice este ''m²&nbsp;s<sup>−1</sup>''.
În [[SI|Sistemul Internațional]] unitatea de măsură a viscozității cinematice este ''m²&nbsp;s<sup>−1</sup>''.


În sistemul [[CGS]] unitatea de măsură a viscozității dinamice este ''stokes'' (St), numită după [[George Gabriel Stokes]]. Uneori se folosește subdiviziunea ''centistokes'' (cSt).
În sistemul [[CGS]] unitatea de măsură a viscozității cinematice este ''stokes'' (St), numită după [[George Gabriel Stokes]]. Uneori se folosește subdiviziunea ''centistokes'' (cSt).
:1 stokes = 100 centistokes = 1 cm<sup>2</sup>&nbsp;s<sup>−1</sup> = 0,0001 m<sup>2</SUP>&nbsp;s<sup>−1</sup>.
:1 stokes = 100 centistokes = 1 cm<sup>2</sup>&nbsp;s<sup>−1</sup> = 0,0001 m<sup>2</SUP>&nbsp;s<sup>−1</sup>
:1 centistokes = 1 mm²/s
:1 centistokes = 1 mm²/s=10^-6 m^2s^-1


Viscozitatea cinematică exprimată în grade Engler se poate converti în unități SI cu relația:<ref name="MIT86"/>
Viscozitatea cinematică exprimată în grade Engler se poate converti în unități SI cu relația:<ref name="MIT86"/>
Linia 60: Linia 76:
[[Categorie:Mecanica fluidelor]]
[[Categorie:Mecanica fluidelor]]
[[Categorie:Termodinamică]]
[[Categorie:Termodinamică]]

[[af:Viskositeit]]
[[ar:لزوجة]]
[[bg:Вискозитет]]
[[bn:সান্দ্রতা]]
[[bs:Viskoznost]]
[[ca:Viscositat]]
[[cs:Viskozita]]
[[cy:Gwasgedd]]
[[da:Viskositet]]
[[de:Viskosität]]
[[el:Ιξώδες]]
[[en:Viscosity]]
[[eo:Viskozeco]]
[[es:Viscosidad]]
[[et:Viskoossus]]
[[eu:Biskositate zinematiko]]
[[fa:گرانروی]]
[[fi:Viskositeetti]]
[[fr:Viscosité]]
[[he:צמיגות]]
[[hi:श्यानता]]
[[hr:Viskoznost]]
[[ht:Viskozite]]
[[hu:Viszkozitás]]
[[id:Viskositas]]
[[is:Seigja]]
[[it:Viscosità]]
[[ja:粘度]]
[[kk:Ортаның кедергісі]]
[[ko:점성]]
[[lb:Viskositéit]]
[[lt:Klampumas]]
[[lv:Viskozitāte]]
[[mk:Вискозност]]
[[ms:Kelikatan]]
[[nn:Viskositet]]
[[no:Viskositet]]
[[pl:Lepkość]]
[[ps:خټنه]]
[[pt:Viscosidade]]
[[ro:Viscozitate]]
[[ru:Вязкость]]
[[simple:Viscosity]]
[[sk:Viskozita]]
[[sl:Viskoznost]]
[[sr:Вискозност флуида]]
[[sv:Viskositet]]
[[ta:பிசுக்குமை]]
[[th:ความหนืด]]
[[tr:Akmazlık]]
[[uk:В'язкість]]
[[ur:لزوجت]]
[[vi:Độ nhớt]]
[[zh:黏度]]

Versiunea curentă din 13 septembrie 2024 09:40

Experiment ce ilustrează viscozitatea unui fluid, adică frecarea internă. Prin țeavă curge glicerină. Partea inferioară a glicerinei este colorată pentru a face efectul vizibil. De-a lungul axei, glicerina curge cu viteza cea mai mare, deci frecarea internă este minimă. Mai departe de axă, frecarea internă crește, și viteza este mai mică. Se poate vedea prin suprafața de contact curbată între glicerina colorată și cea transparentă.

Viscozitatea este proprietatea unui fluid de a se opune mișcării relative a particulelor constituente[1]. Viscozitatea este percepută ca o rezistență la curgere. În acest sens, apa, cu viscozitate mică, este fluidă, în timp ce uleiul, cu viscozitate mare, este viscos. Toate fluidele reale sunt viscoase, cu excepția celor superfluide. Un fluid neviscos este considerat fluid ideal. Viscozitatea este un termen sinonim cu frecarea internă și reprezintă fenomenul ce apare la orice fluid în mișcare, datorită frecării dintre straturile de fluid care se deplasează cu viteze diferite.[2]

Cuvântul viscozitate face parte din familia cuvântului vâscos și în limba română este admisă și pronunția ca atare. Conform normelor ortografice actuale, termenul ar trebui ortografiat vâscozitate. Această formă este în conflict cu radicalul visc- din care derivă familia de cuvinte [3], și se abate de la termenul internațional. Ca urmare, în textele scrise se recomandă folosirea formei viscozitate, prezentă în toate dicționarele și în toate lucrările tehnice.

Viscozitatea dinamică variază de obicei puțin cu presiunea, dar destul de mult cu temperatura. De aceea este necesară și menționarea temperaturii pentru care este dată viscozitatea. În cazul în care densitatea fluidului depinde și ea de presiune și temperatură, viscozitatea cinematică variază mult cu acești parametri, care trebuie precizați. La suspensii viscozitatea variaza cu procentul volumic al particulelor dispersate.

Fluidele pentru care ipoteza lui Newton este valabilă (de exemplu apa, gazele) se numesc fluide newtoniene. Ipoteza simplă a lui Newton nu este valabilă pentru toate fluidele. Fluidele pentru care ipoteza lui Newton nu este valabilă se numesc fluide nenewtoniene. Cu studiul comportării fluidelor din punct de vedere al viscozității se ocupă reologia.

Definire - legea lui Newton

[modificare | modificare sursă]

Isaac Newton a postulat că pentru o curgere uniformă între două plăci plane paralele în mișcare (curgere Couette), tensiunea tangențială τ între două straturi de fluid este proporțională cu gradientul vitezeiu/∂y în direcția perpendiculară pe straturi.[4]

.

Pentru aceasta, a considerat tensiunile tangențiale care apar datorită frecării între suprafețele de separație ale straturilor de fluid care se deplasează cu viteze diferite. Astfel, interacțiunea dintre particulele situate de o parte și de alta a unei suprafețe de separație se manifestă prin tensiuni normale și tangențiale. Dacă un fluid este aflat între două plăci plane paralele aflate între ele la distanța h, se poate considera placa inferioară P1 fixă iar cea superioară P2 că se deplasează cu viteza constantă

Fluidul poate fi asimilat unei serii de straturi subțiri și astfel dacă stratul 1 (datorită aderării la placa mobilă P2) se deplasează cu viteza după un scurt interval de timp, stratul 2 aflat în vecinătate, se pune în mișcare cu o viteză mai mică, Fenomenul se datorează existenței între straturile 1 și 2 a unei tensiuni tangențiale care duce la antrenarea în mișcare a stratului 2, aflat la momentul inițial în repaus. În mod similar, stratul 2 antrenează stratul 3, în timp ce acesta la rândul său acționează asupra stratului 2, în sensul frânării. S-a constatat că un strat oarecare de fluid accelerează stratul adiacent care are o viteză mai mică și frânează pe cel care are o viteză mai mare prin intermediul tensiunilor tangențiale. Fenomenul se manifestă în întregul fluid, până la ultimul strat considerat, a cărui viteză este nulă datorită aderării la placa fixă P1.

Variația tensiunii tangențiale în funcție de gradientul vitezei

Prin acest experiment Isaac Newton a ajuns la concluzia că valoarea tensiunii tangențiale este proporțională cu modulul vitezei V de deplasare a plăcii superioare și invers proporțională cu distanța dintre plăci:

unde coeficientul este o proprietate fizică a fluidului, numită viscozitate dinamică.

Raportul dintre viscozitatea dinamică și densitatea a fluidului:

se numește viscozitate cinematică.

Măsurarea viscozității

[modificare | modificare sursă]

Viscozitatea se poate măsura cu diferite tipuri de viscozimetre. Cum s-a spus, controlul temperaturii în timpul măsurătorilor este esențial.

Tipuri de viscozimetre:

  • Viscozimetre rotative. Acestea determină viscozitatea dinamică. Ele pot determina viscozitatea unui fluid fără a avea nevoie de un fluid de comparație. Sunt folosite ca etaloane.
  • Viscozimetre cu element vibrator. Acestea determină tot viscozitatea dinamică, dar au nevoie de o etalonare cu un fluid de comparație.
  • Viscozimetre cu capilară. Acestea determină viscozitatea cinematică, prin compararea cu un fluid etalon. Sunt foarte precise, se folosesc în laboratoare,
  • Viscozimetru Engler. Acesta determină viscozitatea cinematică, prin compararea cu un fluid etalon, la curgerea printr-un orificiu. Principiul este asemănător viscozimetrelor cu capilară, iar valorile măsurate se exprimă în grade Engler (ºE).
  • Viscozimetre cu bilă. Acestea determină tot viscozitatea cinematică, însă necesită etalonare. Se folosesc în tehnică.

Pentru fluide nenewtoniene, aparatele se numesc reometre.

Unități de măsură

[modificare | modificare sursă]

Viscozitatea dinamică

[modificare | modificare sursă]

În Sistemul Internațional unitatea de măsură a viscozității dinamice este Pascal-secunda (Pa s), care este egală cu 1 kg m−1 s−1. Dacă între două plăci situate la distanța d se pune un fluid cu viscozitatea de 1 Pa s iar placa este deplasată lateral sub o tensiune de 1 Pa, ea se va deplasa în timp de o secundă pe distanța d. Pentru unitatea Pa s s-a propus denumirea de Poiseuille (a nu se confunda cu poise), însă încă nu este acceptată.

În sistemul CGS unitatea de măsură a viscozității dinamice este poise, numită după Jean Louis Marie Poiseuille.

1 P = 1 g cm−1 s−1

Curent se folosește subdiviziunea centipoise (cP), deoarece la 20 °C apa are viscozitatea de 1,0020 cP, o coincidență convenabilă.

Relația dintre poise și Pa s este:

10 P = 1 kg m−1 s−1 = 1 Pa s
1 cP = 0,001 Pa s = 1 mPa s

Viscozitatea cinematică

[modificare | modificare sursă]

În Sistemul Internațional unitatea de măsură a viscozității cinematice este m² s−1.

În sistemul CGS unitatea de măsură a viscozității cinematice este stokes (St), numită după George Gabriel Stokes. Uneori se folosește subdiviziunea centistokes (cSt).

1 stokes = 100 centistokes = 1 cm2 s−1 = 0,0001 m2 s−1
1 centistokes = 1 mm²/s=10^-6 m^2s^-1

Viscozitatea cinematică exprimată în grade Engler se poate converti în unități SI cu relația:[1]

[m² s−1]
  1. ^ a b Bazil Popa ș.a. Manualul inginerului termotehnician, vol I, Editura Tehnică, București, 1984
  2. ^ Lexicon de termodinamică și mașini termice. Vol. IV. Autori: Dan Ștefănescu, Dragoș Sfințeanu, Mircea Marinescu, Ioan Ganea, Stoian Petrescu. Editura Tehnică, București, 1991
  3. ^ Academia Română, Institutul de Lingvistică „Iorgu IordanDicționarul explicativ al limbii române (DEX), Editura Univers Enciclopedic, 1998
  4. ^ * Răduleț, R. și colab. Lexiconul Tehnic Român, Editura Tehnică, București, 1957-1966.

Legături externe

[modificare | modificare sursă]