Work done during quasi-static, isothermal expansion from P_i to P_f

Click For Summary
SUMMARY

The discussion focuses on the calculation of work done during a quasi-static, isothermal expansion from an initial pressure \(P_i\) to a final pressure \(P_f\) using the ideal gas law. The work is calculated using the integral \(W=-\int_{V_i}^{V_f} PdV\) and results in the expression \(W=nRT\ln{\frac{P_f}{P_i}}\). A common error highlighted is the conversion of temperature from Celsius to Kelvin, which is crucial for accurate calculations. The final computed work value of \(-7294\text{ J}\) was incorrect compared to the book's answer of \(-3.17 \times 10^3\text{ J}\).

PREREQUISITES
  • Understanding of the ideal gas law and its applications
  • Knowledge of thermodynamic concepts such as work and isothermal processes
  • Familiarity with calculus, specifically integration and differentiation
  • Ability to convert temperature units from Celsius to Kelvin
NEXT STEPS
  • Study the derivation of the ideal gas law and its implications in thermodynamics
  • Learn about the product rule in differentiation and its applications in thermodynamic equations
  • Explore the concept of quasi-static processes in thermodynamics
  • Investigate common errors in thermodynamic calculations and how to avoid them
USEFUL FOR

Students and professionals in physics and engineering, particularly those studying thermodynamics and fluid mechanics, will benefit from this discussion.

zenterix
Messages
774
Reaction score
84
Homework Statement
(a) Show that the work done by an ideal gas during the quasi-static, isothermal expansion from an initial pressure ##P_i## to a final pressure ##P_f## is given by

$$W=nRT\ln\frac{P_f}{P_i}$$

(b) Calculate the work done when the pressure of 1 mol of an ideal gas is decreased quasi-statically from 20 to 1 atm, the temperature remaining constant at ##20^{\circ} C## (##R=8.31 J/mol\cdot deg##).
Relevant Equations
##W=-\int_{V_i}^{V_f} PdV##
I am posting this question after I thought I had easily solved the problem, but then when I checked the back of the book I saw that I was incorrect.

Here is what I did.

(a)

$$W=-\int_{V_i}^{V_f} PdV\tag{1}$$

$$V=V(P,T)-\frac{nRT}{P}\tag{2}$$

$$dV=\left ( \frac{\partial V}{\partial P}\right )_T dP+\left ( \frac{\partial V}{\partial T} \right )_P dT\tag{3}$$

$$=\frac{-nRT}{P^2}dP\tag{4}$$

Now we plug (4) into (1)

$$W=\int_{P_i}^{P_f} \frac{nRT}{P}dP=nRT\ln{\frac{P_f}{P_i}}\tag{5}$$

(b)

At this point I simply plugged the values into (5)

$$W=1\text{mol}\cdot 8.31 \mathrm{\frac{J}{mol ^\circ C}}\cdot 20^{\circ} \text{C}\cdot \ln{\frac{1\text{atm}}{20\text{atm}}}\tag{6}$$

$$=-7294\text{J}\tag{7}$$

The book answer says ##-3.17\times 10^3## J.
 
Physics news on Phys.org
zenterix said:
(b)

At this point I simply plugged the values into (5)

$$W=1\text{mol}\cdot 8.31 \mathrm{\frac{J}{mol ^\circ C}}\cdot 20^{\circ} \text{C}\cdot \ln{\frac{1\text{atm}}{20\text{atm}}}\tag{6}$$

$$=-7294\text{J}\tag{7}$$

The book answer says ##-3.17\times 10^3## J.
Be careful: indicate that you converted the 20 °C to kelvin. Otherwise, I get the same answer as you.
 
  • Like
Likes   Reactions: zenterix
zenterix said:
$$W=-\int_{V_i}^{V_f} PdV\tag{1}$$

$$V=V(P,T)-\frac{nRT}{P}\tag{2}$$
Where did you get Eqn. 2 from?

Incidentally, you could have done the initial derivation differently by using the product rule for differentiation: $$PdV=d(PV)-VdP$$At constant temperature, d(PV)=nRdT=0, so, at constant temperature, $$PdV=-VdP=-\frac{nRT}{P}dp$$
 
  • Like
Likes   Reactions: zenterix and MatinSAR
DrClaude said:
Be careful: indicate that you converted the 20 °C to kelvin. Otherwise, I get the same answer as you.
Indeed, I did use Kelvin.
 
Chestermiller said:
Where did you get Eqn. 2 from?

Incidentally, you could have done the initial derivation differently by using the product rule for differentiation: $$PdV=d(PV)-VdP$$At constant temperature, d(PV)=nRdT=0, so, at constant temperature, $$PdV=-VdP=-\frac{nRT}{P}dp$$
Equation 2 comes from the equation of state for ideal gases. I think you may be asking because of the typo I have in that equation.

It should be

$$V=V(P,T)=\frac{nRT}{P}$$

I accidentally had a minus sign in place of the second equals sign.
 
  • Like
Likes   Reactions: Chestermiller

Similar threads

Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
19
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
6K