|
2 | 2 | "cells": [
|
3 | 3 | {
|
4 | 4 | "cell_type": "code",
|
5 |
| - "execution_count": 5, |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 1, |
6 | 13 | "metadata": {},
|
7 | 14 | "outputs": [],
|
8 | 15 | "source": [
|
|
29 | 36 | },
|
30 | 37 | {
|
31 | 38 | "cell_type": "code",
|
32 |
| - "execution_count": 16, |
| 39 | + "execution_count": 2, |
33 | 40 | "metadata": {},
|
34 | 41 | "outputs": [],
|
35 | 42 | "source": [
|
|
40 | 47 | },
|
41 | 48 | {
|
42 | 49 | "cell_type": "code",
|
43 |
| - "execution_count": 50, |
| 50 | + "execution_count": 10, |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [], |
| 53 | + "source": [ |
| 54 | + "p = torch.from_numpy(np.abs(np.indices((100,100))[0] - np.indices((100,100))[1]))\n", |
| 55 | + "sigma = torch.ones(100).view(100, 1) * 2" |
| 56 | + ] |
| 57 | + }, |
| 58 | + { |
| 59 | + "cell_type": "code", |
| 60 | + "execution_count": 12, |
| 61 | + "metadata": {}, |
| 62 | + "outputs": [], |
| 63 | + "source": [ |
| 64 | + "P = torch.ones(10,10) * torch.arange(10).view(10,1)" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "code", |
| 69 | + "execution_count": 14, |
| 70 | + "metadata": {}, |
| 71 | + "outputs": [], |
| 72 | + "source": [ |
| 73 | + "S = torch.ones(10,10) * torch.arange(10).view(1,10)" |
| 74 | + ] |
| 75 | + }, |
| 76 | + { |
| 77 | + "cell_type": "code", |
| 78 | + "execution_count": 18, |
| 79 | + "metadata": {}, |
| 80 | + "outputs": [ |
| 81 | + { |
| 82 | + "name": "stderr", |
| 83 | + "output_type": "stream", |
| 84 | + "text": [ |
| 85 | + "/Users/spencerbraun/.pyenv/versions/3.8.11/envs/dl/lib/python3.8/site-packages/torch/nn/functional.py:2747: UserWarning: reduction: 'mean' divides the total loss by both the batch size and the support size.'batchmean' divides only by the batch size, and aligns with the KL div math definition.'mean' will be changed to behave the same as 'batchmean' in the next major release.\n", |
| 86 | + " warnings.warn(\n" |
| 87 | + ] |
| 88 | + }, |
| 89 | + { |
| 90 | + "data": { |
| 91 | + "text/plain": [ |
| 92 | + "tensor(3.4057)" |
| 93 | + ] |
| 94 | + }, |
| 95 | + "execution_count": 18, |
| 96 | + "metadata": {}, |
| 97 | + "output_type": "execute_result" |
| 98 | + } |
| 99 | + ], |
| 100 | + "source": [ |
| 101 | + "lambda row: F.kl_div(P[row,:], S[row,:]) + F.kl_div(S[row,:], P[row,:])" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "code", |
| 106 | + "execution_count": 20, |
| 107 | + "metadata": {}, |
| 108 | + "outputs": [ |
| 109 | + { |
| 110 | + "data": { |
| 111 | + "text/plain": [ |
| 112 | + "tensor([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n", |
| 113 | + " [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],\n", |
| 114 | + " [2., 2., 2., 2., 2., 2., 2., 2., 2., 2.],\n", |
| 115 | + " [3., 3., 3., 3., 3., 3., 3., 3., 3., 3.],\n", |
| 116 | + " [4., 4., 4., 4., 4., 4., 4., 4., 4., 4.],\n", |
| 117 | + " [5., 5., 5., 5., 5., 5., 5., 5., 5., 5.],\n", |
| 118 | + " [6., 6., 6., 6., 6., 6., 6., 6., 6., 6.],\n", |
| 119 | + " [7., 7., 7., 7., 7., 7., 7., 7., 7., 7.],\n", |
| 120 | + " [8., 8., 8., 8., 8., 8., 8., 8., 8., 8.],\n", |
| 121 | + " [9., 9., 9., 9., 9., 9., 9., 9., 9., 9.]])" |
| 122 | + ] |
| 123 | + }, |
| 124 | + "execution_count": 20, |
| 125 | + "metadata": {}, |
| 126 | + "output_type": "execute_result" |
| 127 | + } |
| 128 | + ], |
| 129 | + "source": [ |
| 130 | + "P" |
| 131 | + ] |
| 132 | + }, |
| 133 | + { |
| 134 | + "cell_type": "code", |
| 135 | + "execution_count": 3, |
44 | 136 | "metadata": {},
|
45 | 137 | "outputs": [
|
46 | 138 | {
|
|
60 | 152 | " 9.9000])"
|
61 | 153 | ]
|
62 | 154 | },
|
63 |
| - "execution_count": 50, |
| 155 | + "execution_count": 3, |
64 | 156 | "metadata": {},
|
65 | 157 | "output_type": "execute_result"
|
66 | 158 | }
|
|
71 | 163 | },
|
72 | 164 | {
|
73 | 165 | "cell_type": "code",
|
74 |
| - "execution_count": 75, |
| 166 | + "execution_count": 9, |
75 | 167 | "metadata": {},
|
76 | 168 | "outputs": [
|
77 | 169 | {
|
78 |
| - "data": { |
79 |
| - "text/plain": [ |
80 |
| - "torch.Size([100, 100])" |
81 |
| - ] |
82 |
| - }, |
83 |
| - "execution_count": 75, |
84 |
| - "metadata": {}, |
85 |
| - "output_type": "execute_result" |
| 170 | + "ename": "NameError", |
| 171 | + "evalue": "name 'sigma' is not defined", |
| 172 | + "output_type": "error", |
| 173 | + "traceback": [ |
| 174 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 175 | + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", |
| 176 | + "\u001b[0;32m/var/folders/8w/r6kg1v9x7bbfzf9dw9gjslc80000gn/T/ipykernel_95641/3924366364.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexp\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0msigma\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", |
| 177 | + "\u001b[0;31mNameError\u001b[0m: name 'sigma' is not defined" |
| 178 | + ] |
86 | 179 | }
|
87 | 180 | ],
|
88 | 181 | "source": [
|
|
91 | 184 | },
|
92 | 185 | {
|
93 | 186 | "cell_type": "code",
|
94 |
| - "execution_count": 99, |
| 187 | + "execution_count": 6, |
95 | 188 | "metadata": {},
|
96 |
| - "outputs": [], |
| 189 | + "outputs": [ |
| 190 | + { |
| 191 | + "ename": "NameError", |
| 192 | + "evalue": "name 'p' is not defined", |
| 193 | + "output_type": "error", |
| 194 | + "traceback": [ |
| 195 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 196 | + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", |
| 197 | + "\u001b[0;32m/var/folders/8w/r6kg1v9x7bbfzf9dw9gjslc80000gn/T/ipykernel_95641/3546984218.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mgaussian\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnormal\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msigma\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mgaussian\u001b[0m \u001b[0;34m/=\u001b[0m \u001b[0mgaussian\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdim\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mview\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 198 | + "\u001b[0;31mNameError\u001b[0m: name 'p' is not defined" |
| 199 | + ] |
| 200 | + } |
| 201 | + ], |
97 | 202 | "source": [
|
98 | 203 | "gaussian = torch.normal(p.float(), sigma)\n",
|
99 | 204 | "gaussian /= gaussian.sum(dim=-1).view(-1, 1)"
|
100 | 205 | ]
|
101 | 206 | },
|
102 | 207 | {
|
103 | 208 | "cell_type": "code",
|
104 |
| - "execution_count": 101, |
| 209 | + "execution_count": 5, |
105 | 210 | "metadata": {},
|
106 | 211 | "outputs": [
|
107 | 212 | {
|
108 |
| - "data": { |
109 |
| - "text/plain": [ |
110 |
| - "tensor(1.)" |
111 |
| - ] |
112 |
| - }, |
113 |
| - "execution_count": 101, |
114 |
| - "metadata": {}, |
115 |
| - "output_type": "execute_result" |
| 213 | + "ename": "NameError", |
| 214 | + "evalue": "name 'gaussian' is not defined", |
| 215 | + "output_type": "error", |
| 216 | + "traceback": [ |
| 217 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 218 | + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", |
| 219 | + "\u001b[0;32m/var/folders/8w/r6kg1v9x7bbfzf9dw9gjslc80000gn/T/ipykernel_95641/494294515.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mgaussian\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", |
| 220 | + "\u001b[0;31mNameError\u001b[0m: name 'gaussian' is not defined" |
| 221 | + ] |
116 | 222 | }
|
117 | 223 | ],
|
118 | 224 | "source": [
|
|
173 | 279 | "execution_count": 67,
|
174 | 280 | "metadata": {},
|
175 | 281 | "outputs": [],
|
176 |
| - "source": [ |
177 |
| - "p = torch.from_numpy(np.abs(np.indices((100,100))[0] - np.indices((100,100))[1]))" |
178 |
| - ] |
| 282 | + "source": [] |
179 | 283 | },
|
180 | 284 | {
|
181 | 285 | "cell_type": "code",
|
182 | 286 | "execution_count": 72,
|
183 | 287 | "metadata": {},
|
184 | 288 | "outputs": [],
|
185 |
| - "source": [ |
186 |
| - "sigma = torch.ones(100).view(100, 1) * 2" |
187 |
| - ] |
| 289 | + "source": [] |
188 | 290 | },
|
189 | 291 | {
|
190 | 292 | "cell_type": "code",
|
|
0 commit comments