Skip to content

Commit 9d48f95

Browse files
committedNov 17, 2019
trained model1
1 parent 8627029 commit 9d48f95

File tree

3 files changed

+3
-3
lines changed

3 files changed

+3
-3
lines changed
 

‎README.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -32,9 +32,9 @@ We generate our own dataset from YUV test sequences, refer to:
3232
We use Cross Entropy Loss as loss function. For the four output labels, we calculate the Cross Entropy Loss seperately and then add them together.
3333

3434
## Validation
35-
The **loss** of our trained model is: 3.1161
35+
The **loss** of our trained model is: 3.1049
3636

37-
The **accuracy** of each label predicted is: 65.29%
37+
The **accuracy** of each label predicted is: 66.12%
3838

3939
The best way to evaluate the model is to integrate the model into the HEVC encoder. I've conceived a pipeline:
4040

‎hevc_encoder_model.pt

4 Bytes
Binary file not shown.

‎model test pipline/test_rdcost_pipeline.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -80,7 +80,7 @@ def process_rdcost(ctu_x,ctu_y):
8080
if len(depth_cost[frame_number][ctu_number]["1"]) == 4:
8181
pass
8282
else:
83-
if (int(ctu_number) + 1) % ctu_x == 0 and (int(ctu_number) + 1) // ctu_x == ctu_y:
83+
if (int(ctu_number) + 1) % ctu_x == 0 and ((int(ctu_number) + 1) // ctu_x) == ctu_y:
8484
depth_cost[frame_number][ctu_number]["0"] = sum(depth_cost[frame_number][ctu_number]["1"])
8585
depth_cost[frame_number][ctu_number]["1"] += [0,0,0]
8686
depth_cost[frame_number][ctu_number]["2"] += list(np.zeros(12))

0 commit comments

Comments
 (0)