Category:Machine learning
Jump to navigation
Jump to search
scientific study of algorithms and statistical models that computer systems use to perform tasks without explicit instructions | |||||
Upload media | |||||
Instance of |
| ||||
---|---|---|---|---|---|
Subclass of | |||||
Part of | |||||
Has part(s) |
| ||||
Developer | |||||
Follows |
| ||||
Different from | |||||
Partially coincident with | |||||
| |||||
English: Machine learning is a branch of statistics and computer science, which studies algorithms and architectures that learn from observed facts.
Subcategories
This category has the following 40 subcategories, out of 40 total.
*
A
C
- Case-based reasoning (5 F)
D
- Data spirals (6 F)
E
- Tina Eliassi-Rad (4 F)
G
H
I
K
M
- Markov models (31 F)
O
- ORES (2 F)
- Overfitting (13 F)
P
R
- Reinforcement learning (21 F)
S
- Stockfish (chess) (4 F)
- Support vector machine (24 F)
T
- Thought cloning in AI (8 F)
U
- Underfitting (2 F)
V
- Vowpal Wabbit (2 F)
Pages in category "Machine learning"
This category contains only the following page.
Media in category "Machine learning"
The following 200 files are in this category, out of 454 total.
(previous page) (next page)-
De-maschinelles Lernen.ogg 2.1 s; 20 KB
-
1D Convolution.png 321 × 310; 11 KB
-
1D Convolutional Neural Network feed forward example.png 661 × 301; 31 KB
-
2d-epochs-overfitting.svg 900 × 739; 86 KB
-
4fold3class.jpg 536 × 373; 122 KB
-
815-tfdne-ai-generated.png 512 × 512; 423 KB
-
A hybrid deep learning approach for medical relation extraction.pdf 1,275 × 1,650, 4 pages; 570 KB
-
A simple Decision Tree.png 828 × 828; 76 KB
-
Accure Momentum Cluster.png 692 × 342; 45 KB
-
ActivationFunctions.svg 1,058 × 606; 293 KB
-
Adjacent sampling method for training and testing dataset.png 1,672 × 1,418; 3.2 MB
-
AdvFig2.jpg 406 × 104; 15 KB
-
AI End-Scenario Six Avenues for AI takeover tamingtheaibeast.png 3,285 × 2,131; 547 KB
-
AI hierarchy pl.svg 399 × 399; 4 KB
-
AI hierarchy.svg 399 × 399; 8 KB
-
AI relation to Generative Models subset, venn diagram.png 1,024 × 1,024; 102 KB
-
AI Techniques Overview.png 860 × 624; 71 KB
-
AI Types. Tipos Inteligencia Artificial.svg 953 × 899; 22 KB
-
Alternate Loss Functions for training ANNs.png 1,043 × 795; 68 KB
-
Amortized hardware and energy cost to train frontier AI models over time.png 2,400 × 1,572; 242 KB
-
Analogical modeling pointer network.svg 310 × 300; 29 KB
-
Andrews curve for Iris data set.png 1,150 × 742; 334 KB
-
Apache SystemML logo.svg 512 × 160; 921 bytes
-
Apprentissage Supervisé Vs Non Supervisé.png 714 × 317; 28 KB
-
Aprendizado por Reforço.png 1,000 × 1,000; 94 KB
-
Aprendizagem não supervisionada.png 1,613 × 2,100; 210 KB
-
Aprenentatge automàtic.jpg 920 × 682; 40 KB
-
APS ML screen shot.jpg 1,010 × 1,046; 210 KB
-
Architecture d'un Transformeur.png 1,600 × 1,440; 380 KB
-
Artificial grammar learning example.jpg 462 × 252; 28 KB
-
Artificial Neural Network with Chip.jpg 2,000 × 1,600; 2.59 MB
-
Artificial Neural Network with Chip.png 1,257 × 943; 1.9 MB
-
Attention-1-sn.png 1,835 × 1,311; 83 KB
-
Attention-qkv.png 2,634 × 1,145; 234 KB
-
ATW CNN architecture.png 3,360 × 5,019; 807 KB
-
Augmentation Content Curation DRAFT.pdf 1,275 × 1,650, 7 pages; 261 KB
-
Augmentation Content Generation DRAFT.pdf 1,275 × 1,650, 6 pages; 260 KB
-
Augmentation Governance DRAFT.pdf 1,275 × 1,650, 5 pages; 284 KB
-
Augmentation Machine Translation DRAFT.pdf 1,275 × 1,650, 8 pages; 1.25 MB
-
Augmentor.png 330 × 182; 25 KB
-
Autoai-process.jpg 1,187 × 445; 73 KB
-
AutoAI-process.png 1,466 × 582; 393 KB
-
Autoencoder structure uk.png 677 × 506; 39 KB
-
Autoencoder structure.png 677 × 506; 48 KB
-
Autoencoder-bottleneck-layer.png 1,082 × 473; 72 KB
-
AutoML diagram.png 2,588 × 938; 56 KB
-
Base de dados de flores de íris.svg 512 × 486; 208 KB
-
Basic principle of a soft sensor.png 850 × 303; 22 KB
-
Bayessches Netz.png 607 × 250; 4 KB
-
Beta Trial PhyzBatch-9000.png 4,032 × 3,024; 8.86 MB
-
Beyond Human Journey Towards A.I World Book By Deepak Dinesh Kapadnis.jpg 1,242 × 1,755; 317 KB
-
Big Bench Hard performance vs AI scale.png 2,400 × 1,500; 154 KB
-
BPM input space wiki.pdf 1,239 × 1,752; 381 KB
-
BPM MLP wiki.pdf 1,239 × 1,752; 383 KB
-
C.EstelleSmith ResearchShowcase 5 20 20.pdf 1,500 × 1,125, 50 pages; 2.23 MB
-
Calibration plot.png 1,000 × 1,000; 109 KB
-
Captioned image dataset examples.jpg 1,770 × 2,209; 1,017 KB
-
Carto IA deepLearning.svg 1,034 × 871; 11 KB
-
CB pdf.png 858 × 683; 101 KB
-
CbrCycle basic de.png 1,200 × 986; 28 KB
-
Centralized federated learning protocol-be.png 1,716 × 1,196; 111 KB
-
Cires.jpg 400 × 492; 100 KB
-
Climate data analysis using tSNE method.png 814 × 805; 94 KB
-
CollieBrownArghonCEO.jpg 965 × 1,241; 307 KB
-
Compactness Comparison of Linear and Multilinear Projections.png 791 × 614; 65 KB
-
Comparison of Loss functions for binary classification.png 1,920 × 756; 45 KB
-
Concept lattice.svg 693 × 513; 70 KB
-
Concept of machine learning.png 1,884 × 1,108; 121 KB
-
Concept of traditional computer applications.png 1,884 × 1,108; 123 KB
-
Confusion matrix.png 1,557 × 805; 82 KB
-
Contexts venn diagramm for analogical modeling.svg 600 × 582; 10 KB
-
Contraintes dans l'espace.png 298 × 236; 15 KB
-
Conv layers uk.png 567 × 310; 42 KB
-
Convolutional-neural-network-polyanalyst-flowchart-example.png 561 × 190; 20 KB
-
Convolutional-neural-network-polyanalyst-flowchart-example.svg 891 × 357; 280 KB
-
ConvolutionAndPooling.svg 839 × 208; 160 KB
-
CorteX Carte Predpol.jpg 446 × 196; 93 KB
-
CRAIYON-REALESRGAN-Dalmatian bench.jpg 1,024 × 1,024; 293 KB
-
Data Augmentation of rock images revised.jpg 1,280 × 1,440; 472 KB
-
Data Augmentation of rock images.jpg 1,522 × 1,128; 288 KB
-
DatasetSample.png 1,586 × 1,066; 2.2 MB
-
David Weinberger with blue checks - 2019.png 2,793 × 2,845; 11.34 MB
-
Dean Weber.png 957 × 931; 1.76 MB
-
Decaying Sine Unit (DSU).png 3,000 × 2,000; 420 KB
-
Deep learning fait parti de l'IA.png 621 × 598; 37 KB
-
DeepInsight method to transform non-image data to 2D image for convolutional neural network architecture.pdf 1,239 × 1,629, 7 pages; 1.78 MB
-
DeepLearningReconstruction.png 2,502 × 600; 617 KB
-
Denoising-autoencoder.png 1,743 × 840; 121 KB
-
DenseCap (Johnson et al., 2016) (cropped).png 702 × 495; 489 KB
-
DenseCap (Johnson et al., 2016).png 1,500 × 495; 1.02 MB
-
Diagram of the mountain car problem.png 435 × 169; 3 KB
-
Discussionreport-collage2 (cropped).png 500 × 500; 485 KB
-
Discussionreport-collage2.png 768 × 512; 701 KB
-
DoitasunaEstaldura.svg 440 × 800; 40 KB
-
Dragonfly-Trainable-segmentation-workspace.png 1,904 × 955; 316 KB
-
Duplication attributs.png 562 × 188; 5 KB
-
Edge approximation.svg 400 × 450; 7 KB
-
EfficientNetB3V2.jpg 720 × 720; 66 KB
-
EfficientNetB4.jpg 720 × 720; 65 KB
-
EfficientNetB7.jpg 720 × 720; 65 KB
-
Employee Attrition Prediction.pdf 1,275 × 1,650, 3 pages; 619 KB
-
En low bias low variance.png 625 × 568; 7 KB
-
EncoderDecoder.pdf 1,275 × 458; 9 KB
-
Entropy illustration.png 1,643 × 1,642; 130 KB
-
Entropy-illustration.png 1,630 × 923; 123 KB
-
Enwiki editquality data revision contributions by month.png 411 × 305; 11 KB
-
Enwiki editquality years since account creation histogram.png 396 × 278; 9 KB
-
Esquema 1.svg 512 × 298; 64 KB
-
Esquema 2.svg 512 × 198; 27 KB
-
Esquema aprendizaje.jpg 920 × 682; 34 KB
-
Esquema castellà.jpg 929 × 707; 86 KB
-
EsquemaAA.jpg 920 × 682; 42 KB
-
Esssssa1.png 708 × 223; 42 KB
-
EVA Lernen Training.svg 1,052 × 744; 41 KB
-
Example for Adjusted Rand index.svg 900 × 360; 467 KB
-
Feature Learning Diagram.png 1,000 × 333; 32 KB
-
Feature selection Embedded Method.png 1,279 × 379; 46 KB
-
Feature selection Wrapper Method.png 1,220 × 342; 41 KB
-
FeatureSelectionToolbox1 screenshot.png 1,025 × 740; 46 KB
-
Federated learning (centralized vs decentralized).png 2,504 × 1,266; 232 KB
-
Federated learning (horizontal vs. vertical.png 1,866 × 1,404; 233 KB
-
Federated learning process central case.png 906 × 435; 73 KB
-
Filter Methode uk.png 940 × 107; 8 KB
-
Filter Methode.png 932 × 92; 30 KB
-
Flores de Íris.png 1,945 × 977; 1.99 MB
-
Flowchart of the spatio-temporal action localization detector Segment-tube.png 3,934 × 3,280; 1.93 MB
-
FreqGenSchema.png 1,408 × 829; 28 KB
-
Frequency distribution of pre-processing techniques.jpg 864 × 428; 37 KB
-
Frequency experiment two dimension.png 1,087 × 270; 181 KB
-
FullSLAM.png 600 × 396; 15 KB
-
Gaussian process draws from prior distribution.png 1,200 × 400; 112 KB
-
Gaussian Process Regression.png 1,200 × 400; 98 KB
-
Gaussian training data.png 512 × 512; 28 KB
-
GaussianScatterPCA.svg 720 × 720; 515 KB
-
Gcp docai platform.1000064920000870.max-2000x2000 (2).png 2,000 × 870; 204 KB
-
Geometryczna wizualizacja indeksu jaccarda.png 600 × 248; 22 KB
-
Glue Ontologie Beispiel.png 400 × 106; 19 KB
-
Glue-Architektur.png 297 × 509; 28 KB
-
GMilovanovic eRum2018.pdf 1,654 × 1,239, 14 pages; 1.02 MB
-
GNN building blocks.png 7,810 × 2,010; 740 KB
-
GNN representational limits.png 3,430 × 3,510; 502 KB
-
Gradient descent with momentum.svg 512 × 549; 316 KB
-
Gradio example.png 1,119 × 930; 671 KB
-
Graphical abstract-synth2real.jpg 1,125 × 345; 55 KB
-
Growing Cosine Unit (GCU) activation function.png 3,000 × 2,186; 273 KB
-
Hazardconf.png 261 × 163; 167 KB
-
HDLTex.jpg 2,277 × 905; 567 KB
-
Hinge loss variants.svg 720 × 540; 21 KB
-
Hinge loss vs zero one loss.svg 720 × 540; 15 KB
-
Hitchhiking worldwide 2024.png 1,200 × 633; 334 KB
-
Idistance.jpg 601 × 351; 26 KB
-
Illustration of imperceptible adversarial pertubation.png 680 × 262; 190 KB
-
Image Content filtration - Outreachy.pdf 2,000 × 1,125, 32 pages; 931 KB
-
Info Gain Root Split Example.png 281 × 351; 15 KB
-
Info Gain Splitting the Child Node(s) Example.png 361 × 511; 23 KB
-
Instance-based learning.jpg 796 × 533; 81 KB
-
Integrated-stacking.png 8,192 × 3,807; 1.11 MB
-
Intersection over Union - object detection bounding boxes.jpg 600 × 450; 92 KB
-
Intersection over Union - poor, good and excellent score.png 600 × 248; 8 KB
-
Intersection over Union - visual equation.png 600 × 468; 11 KB
-
Iris Flowers Clustering kMeans de.svg 660 × 309; 145 KB
-
Iris Flowers Clustering kMeans ru.svg 660 × 309; 50 KB
-
Iris Flowers Clustering kMeans.svg 660 × 309; 145 KB
-
K-fold cross validation EN.svg 555 × 275; 230 KB
-
K-fold cross validation UK.svg 521 × 257; 247 KB
-
K-Fold Cross-Validation.png 835 × 384; 44 KB
-
Keras model inner2 epochs10000.svg 575 × 431; 731 KB
-
Keras model inner32 epochs500.svg 575 × 431; 934 KB
-
Kernel trick idea.svg 1,344 × 576; 13 KB
-
Kmedoid2.jpg 560 × 420; 17 KB
-
Kmedoid3.jpg 560 × 420; 18 KB
-
Kmedoidt3.jpg 597 × 399; 42 KB
-
Knowledge Graph Embedding.pdf 1,293 × 585; 182 KB
-
KnowledgeGraphEmbedding.png 1,562 × 702; 148 KB
-
Kompromis między obciążeniem a wariancją – dekompozycja.svg 375 × 375; 82 KB
-
L1-PCA.png 1,750 × 1,313; 82 KB
-
Labelled points in feature space.jpg 425 × 425; 30 KB
-
Language model in Deepmind's 2021 Retro for RAG.svg 512 × 314; 51 KB
-
Large-scale AI training compute (FLOP) vs Publication date (2017-2024).svg 1,920 × 1,080; 108 KB
-
Lasso Regression.png 521 × 442; 22 KB
-
Lasso regularization.png 701 × 500; 17 KB
-
Latent Dirichlet allocation.svg 593 × 311; 15 KB
-
Learn gate concept.png 250 × 250; 16 KB
-
Learners.jpg 327 × 88; 16 KB
-
Learning Curves (Naive Bayes).png 640 × 480; 41 KB
-
Least Squares Policy Iteration.svg 403 × 227; 42 KB
-
Leave-one-out.jpg 527 × 263; 149 KB
-
LinearneSeparovatelne.png 435 × 386; 14 KB
-
Lle hlle swissroll.png 906 × 708; 319 KB
-
LLM emergent benchmarks.png 1,297 × 858; 160 KB
-
Log-loss-curve.png 800 × 400; 7 KB
-
Logistic regression model space.png 512 × 512; 17 KB
-
Logo alebia.png 382 × 165; 13 KB
-
Loss function surrogates.svg 512 × 512; 40 KB
-
Loss Functions for training ANNs.png 956 × 807; 54 KB
-
Lstm block.svg 395 × 455; 32 KB