跳转到内容

分子运动论

本页使用了标题或全文手工转换
维基百科,自由的百科全书

这是分子运动论当前版本,由Cewbot留言 | 贡献编辑于2024年4月21日 (日) 01:25 (清理跨語言連結奥古斯特·克罗尼格成為內部連結:編輯摘要的紅色內部連結乃正常現象,經繁簡轉換後存在,非bot錯誤編輯 (本次機械人作業已完成57.4%))。这个网址是本页该版本的固定链接。

(差异) ←上一修订 | 最后版本 (差异) | 下一修订→ (差异)
理想单原子分子气体的温度是其分子的平均动能的量度。

分子运动论(英語:kinetic theory of gases,又稱气体动力论)是描述气体为大量做永不停息的随机运动的粒子(原子分子,物理学上一般不加区分,都称作分子)。快速运动的分子不断碰撞其他分子或容器的壁。分子运动理论就是通过分子的成分和运动来解释气体的宏观性质,如压强温度体积等。分子運动理论认为,压强不是如牛顿猜想的那样,来自分子之间的静态排斥,而是来自以不同速度做热运动的分子之间的碰撞。

分子的体积很小,不能直接观察。显微镜下花粉迸裂出之微粒做的无规则运动——布朗运动,是分子碰撞的直接结果,可以作为分子存在的间接证据。

理论假设

[编辑]

理想气体动理论建立在如下假设之上:

  • 气体由大量微小粒子组成,这些微小粒子称之为分子。分子之间的距离远大于自身的大小。
  • 所有分子都具有相同的质量。
  • 分子数量巨大,可以进行统计处理。
  • 分子做着不息的快速的随机运动。
  • 分子不断彼此碰撞,或与容器器壁进行碰撞,这些碰撞都是弹性碰撞。
  • 除了碰撞之外,分子之间的相互作用可以忽略。
  • 气体分子平均动能只依赖于系统温度。
  • 分子与容器器壁的碰撞时间远远小于两次碰撞间隔时间。
  • 分子具有质量,会受到万有引力的影响。

分子动力学的现代理论建立在波尔兹曼方程的基础之上,对以上假设有所放宽,并将分子体积考虑进去,因此可以精确描述稠密气体。分子动力学的现代理论仍然要考虑的假设有,分子混沌英语Molecular chaos性假设,忽略量子效应。如果气体比较稠密,本体性质只有小的梯度,可以应用维里展开的方法研究,这方面的理论参见查普曼和恩斯克格的专著。[1] 对于稀薄气体,本体性质的梯度与分子的平均自由程相比较,这种情况叫克努森区,可以对克努森数展开来研究。

发展歷史

[编辑]
《流体力学》封面

人类早在公元前5世纪就开始思考物质的结构问题。古希腊时期著名的朴素唯物主义哲学家德谟克利特就提出,物质是由不可分的原子构成的。这种思想在数个世纪都深刻的影响着人们的世界观。17世纪科學革命以来,自然科学得到了突飞猛进的进步,特别是热力学的突破性发展,使人们重新思考物质的结构问题。皮埃爾·伽桑狄罗伯特·胡克伯努利等科学家的研究表明,物质的液体固体气体三种状态的转变是因为分子之间作用的结果,特别是气体的压力源于气体分子与器壁碰撞,从而导出了玻意耳-马略特定律

1738年,丹尼尔·伯努利发表著作《流体力学》,为气体动力论的基础。在这一著作中,伯努利提出,气体是由大量向各个方向运动的分子组成的,分子对表面的碰撞就是气压的成因,热就是分子运动的动能。但是,伯努利的观点并没有被立即接受,部分原因是,能量守恒定律当时还没有建立,分子之间为弹性碰撞也不是那么显而易见。1744年罗蒙诺索夫第一次明确提出热现象是分子无规则运动的表现,并把機械能守恆定律应用到了分子运动的热现象中。1856年,奥古斯特·克罗尼格提出了一个简单的气体动力论,他只考虑了分子的平动。[2] 1857年,克劳修斯提出一个更复杂的气体动力论,除了分子的平动,他还考虑了分子的转动和振动。他还引入了平均自由程的概念。[3]1859年,麦克斯韦在克劳修斯工作的基础上,提出了分子麦克斯韦速度分布率。这是物理学史上第一个统计定律。[4] 1871年,玻尔兹曼推广了麦克斯韦的工作,提出了麦克斯韦–玻尔兹曼分布[5]:36-37

直到20世纪初,很多物理学家仍然认为原子只是假想,并非实在的。直到1905年爱因斯坦[6]和1906年马利安·斯莫鲁霍夫斯基英语Marian Smoluchowski[7]关于布朗运动的论文发表之后,物理学家才放弃此想法。他们的论文给出了分子动力论的准确预言。

意义

[编辑]

分子运动论使人类正确认识到了物质的结构组成和运动的一般规律,成功解释了诸如布朗运动等现象,并成为物理学中其他理论,甚至很多其他学科的理论基础。

性质

[编辑]

压强和动能

[编辑]

在氣體動力論中,壓力是以氣體對某個平面撞擊所造成的力解釋,假設一個邊長為 的正立方體,一顆質量為 的粒子以速率 在完全彈性碰撞的情況下,沿 X 軸撞擊其中一面的動量變化為:

此粒子每隔 便撞擊該面一次,因此該面所受到的力量為:

在一共有 n 個相同粒子的狀況下,該面所受到的總力為:

定義:

用相同的方式也可以得到:

因為大量氣體粒子的運動可以視為無規則的運動,因此大量氣體粒子向每一方向的速率分布情形皆相同,所以:

每個面所受到的壓强為:

方均根表示其中的 亦可得:

这是分子动理论的第一个非平庸的结果,它把宏观量压强与微观量粒子的平均动能联系起来。

温度與動能

[编辑]

根據理想氣體方程式波茲曼常數絕對溫度,粒子数N=n):

于是可得单个分子的动能为:

故系統的總动能可表示為:

这是分子动理论中的一个重要结果:分子的平均动能正比于体系的绝对温度。

因此,压强与摩尔体积之积与分子平均平动动能成正比。 对于由个单原子分子组成的气体体系,自由度总数为,因此每个自由度的动能是

每个自由度的动能正比于温度,比例系数为波尔兹曼常数的一半,这个结果叫做能量均分定理

对容器的碰撞

[编辑]

对于理想气体,可以推导出n[8] 单位时间内分子对容器单位面积的碰撞次数为

方均根速率

[编辑]

所有分子速率平方的平均值的平方根

其中 為米/秒 (m/s),R是理想氣體常數,M 為莫耳質量(千克/莫耳 (kg/mol))。其中最有可能的速度為均方根速率的81.6%,而平均速度為均方根速率的92.1%。(麦克斯韦-玻尔兹曼分布

参见

[编辑]

参考资料

[编辑]
  1. ^ Sydney Chapman and T.G. Cowling (1970). The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, third edition (Cambridge University Press).
  2. ^ Krönig, A., Grundzüge einer Theorie der Gase, Annalen der Physik, 1856, 99 (10): 315–322 [2013-04-19], Bibcode:1856AnP...175..315K, doi:10.1002/andp.18561751008, (原始内容存档于2020-10-01) 
  3. ^ Clausius, R., Ueber die Art der Bewegung, welche wir Wärme nennen, Annalen der Physik, 1857, 176 (3): 353–379 [2013-04-19], Bibcode:1857AnP...176..353C, doi:10.1002/andp.18571760302, (原始内容存档于2020-10-31) 
  4. ^ Mahon, Basil, The Man Who Changed Everything – the Life of James Clerk Maxwell, Hoboken, NJ: Wiley, 2003, ISBN 0-470-86171-1 
  5. ^ L.I Ponomarev; I.V Kurchatov. The Quantum Dice. CRC Press. 1 January 1993. ISBN 978-0-7503-0251-7. 
  6. ^ Einstein, A., Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen (PDF), Annalen der Physik, 1905, 17 (8): 549–560 [2013-04-19], Bibcode:1905AnP...322..549E, doi:10.1002/andp.19053220806, (原始内容 (PDF)存档于2005-04-10) 
  7. ^ Smoluchowski, M., Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen, Annalen der Physik, 1906, 21 (14): 756–780 [2013-04-19], Bibcode:1906AnP...326..756V, doi:10.1002/andp.19063261405, (原始内容存档于2019-06-08) 
  8. ^ Collisions With a Surface. [2013-04-17]. (原始内容存档于2008-05-28).