বিষয়বস্তুতে চলুন

সম্ভাবনা বিন্যাস

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
সম্ভাবনা বিন্যাস ফাংশন-ডায়াগ্রাম

যেকোনো দৈব চলকে (random variable) কি সম্ভাবনায় কোনো মান নিবে অর্থাৎ কীভাবে দৈব চলকটি বিন্যস্ত থাকবে তা নির্ধারণ করে সম্ভাবনা বিন্যাস বা সম্ভাবনা বিন্যাস ফাংশন (probability distribution)। X কোনো দৈব চলক হলে তার মানের যেকোনো ব্যবধি (interval) -তে সংশ্লিষ্ট বিন্যাস ফাংশন একটি সম্ভাবনা আরোপ করে, যা চলকটির ঐ ব্যবধি হতে মান নেবার সম্ভাবনাকে নির্দেশ করে।

বিন্যাস ফাংশনকে সংজ্ঞায়িত করা হয় ক্রমযোজিত বিন্যাস ফাংশন F(x) দ্বারা এভাবে -

যেখানে

অবিচ্ছিন্ন সম্ভাবনা বিন্যাস

[সম্পাদনা]

একটি বিন্যাস অবিচ্ছিন্ন হয়, যদি তার দৈব চলক কোনো বাস্তব সংখ্যার ব্যবধি হতে অবিচ্ছিন্নভাবে বা যেকোনো মান নিতে পারে। সেক্ষেত্রে ক্রমযোজিত বিন্যাস ফাংশনকে প্রকাশ করা হয় এভাবে -

যেখানে । এখানে -কে বলা হয় সম্ভাবনা ঘনত্ব ফাংশন

বিচ্ছিন্ন সম্ভাবনা বিন্যাস

[সম্পাদনা]

অপরদিকে একটি বিন্যাস বিচ্ছিন্ন হয়, যখন তার দৈব চলকের মানের সেট গণনাযোগ্য হয়, অর্থাৎ চলকটি কেবল বিচ্ছিন্ন মান নিতে পারে। বিচ্ছিন্ন বিন্যাসের কোনো ঘনত্ব ফাংশন হয় না, তবে বিচ্ছিন্ন বিন্যাসের ক্রমযোজিত ফাংশনকে প্রকাশ করা হয় এভাবে -

যেখানে অর্থাৎ চলকটি ইত্যাদি বিচ্ছিন্ন মান নেয় এবং এখানে -কে বলা হয় সম্ভাবনা ভর ফাংশন, যা অবিচ্ছিন্ন বিন্যাসের হয় না।

গুরুত্বপূর্ণ সম্ভাবনা বিন্যাসের তালিকা

[সম্পাদনা]

অনেক বিন্যাসের আলাদা নাম রয়েছে। এখানে গুরুত্বপূর্ণ কয়েকটি উল্লেখ করা হলো।

বিচ্ছিন্ন বিন্যাস

[সম্পাদনা]

সসীম ব্যবধি

[সম্পাদনা]
  • বার্নলি বিন্যাস হল যেকোনো হ্যাঁ/না পরীক্ষার বিন্যাস, যার মান 1 নেবার সম্ভাবনা p এবং 0 নেবার সম্ভাবনা q = 1 − p.
  • দ্বিপদী বিন্যাস হল স্বাধীন ও ধারাবাহিকভাবে পরিচালিত হ্যাঁ/না পরীক্ষায় সাফল্যের সংখ্যার বিন্যাস।

অসীম ব্যবধি

[সম্পাদনা]

বিচ্ছিন্ন বিন্যাস

[সম্পাদনা]

সীমাবদ্ধ ব্যবধি

[সম্পাদনা]

প্রায়-অসীম ব্যবধি

[সম্পাদনা]

সমস্ত সংখ্যারেখা যাদের ব্যবধি

[সম্পাদনা]