This repository contains the complete implementation design for building an enterprise-grade, open-source Software Engineering Intelligence (SEI) platform. The platform provides data-driven insights into engineering operations, team performance, and development lifecycle optimization.
graph TB
subgraph "Data Sources Layer"
A1[GitHub/GitLab APIs]
A2[Jira/Azure DevOps]
A3[CI/CD Pipelines]
A4[Security Scanners]
A5[Custom APIs]
A6[Slack/Teams]
end
subgraph "Data Collection & Processing"
B1[Apache Airflow<br/>Orchestration]
B2[Custom Connectors<br/>Python/Go]
B3[Webhook Handlers<br/>FastAPI]
B4[Message Queue<br/>Apache Kafka]
end
subgraph "Data Storage"
C1[TimescaleDB<br/>Time Series]
C2[PostgreSQL<br/>Metadata]
C3[Redis<br/>Cache]
C4[MinIO<br/>Object Storage]
end
subgraph "Analytics Engine"
D1[Apache Spark<br/>Big Data Processing]
D2[Metabase<br/>BI Platform]
D3[Custom ML Models<br/>Python/scikit-learn]
D4[DORA Metrics Engine<br/>Go]
end
subgraph "API Layer"
E1[GraphQL API<br/>Hasura]
E2[REST API<br/>FastAPI]
E3[WebSocket<br/>Real-time Updates]
end
subgraph "Frontend Applications"
F1[Executive Dashboard<br/>React]
F2[Team Analytics<br/>Vue.js]
F3[Developer Portal<br/>Next.js]
F4[Mobile App<br/>React Native]
end
A1 --> B2
A2 --> B2
A3 --> B3
A4 --> B3
A5 --> B1
A6 --> B3
B1 --> B4
B2 --> B4
B3 --> B4
B4 --> C1
B4 --> C2
C1 --> C3
C1 --> D1
C2 --> D2
C1 --> D3
C2 --> D4
D1 --> E1
D2 --> E2
D3 --> E1
D4 --> E2
E1 --> F1
E2 --> F2
E1 --> F3
E2 --> F4
| Layer | Technology | Purpose | License |
|---|---|---|---|
| Orchestration | Apache Airflow | Workflow management & ETL | Apache 2.0 |
| Database | TimescaleDB | Time-series data storage | PostgreSQL License |
| Analytics | Metabase | Business Intelligence | AGPL-3.0 |
| Processing | Apache Spark | Big data processing | Apache 2.0 |
| API | FastAPI + Hasura | REST/GraphQL APIs | MIT |
| Frontend | React/Vue.js | Web applications | MIT |
| Container | Docker + Kubernetes | Orchestration | Apache 2.0 |
# Clone the repository
git clone https://github.com/rcdelacruz/open-source-sei-platform.git
cd open-source-sei-platform
# Start with Docker Compose (Development)
docker-compose up -d
# Or deploy to Kubernetes (Production)
kubectl apply -f k8s/├── docs/ # Documentation
├── src/
│ ├── collectors/ # Data collection services
│ ├── processors/ # Data processing pipelines
│ ├── apis/ # API services
│ ├── frontend/ # Web applications
│ └── ml/ # Machine learning models
├── infrastructure/
│ ├── docker/ # Docker configurations
│ ├── k8s/ # Kubernetes manifests
│ └── terraform/ # Infrastructure as Code
├── tests/ # Test suites
└── scripts/ # Automation scripts
- DORA Metrics: Deployment frequency, lead time, change failure rate, recovery time
- Team Performance: Velocity tracking, bottleneck identification, collaboration metrics
- Code Quality: Technical debt analysis, security vulnerability tracking
- Predictive Analytics: Risk prediction, capacity planning, timeline forecasting
- Version Control: GitHub, GitLab, Bitbucket, Azure DevOps
- Project Management: Jira, Azure Boards, Linear, Asana
- CI/CD: Jenkins, GitHub Actions, GitLab CI, CircleCI, Tekton
- Communication: Slack, Microsoft Teams, Discord
- Security: Snyk, SonarQube, Veracode, Checkmarx
- Executive View: High-level KPIs, ROI metrics, strategic insights
- Engineering Manager: Team performance, resource allocation, delivery tracking
- Developer: Personal productivity, code quality, review metrics
- Product Manager: Feature delivery, user impact, technical health
- Infrastructure setup (Kubernetes, databases)
- Core data collectors (Git, Jira)
- Basic analytics pipeline
- Simple dashboards
- DORA metrics implementation
- Team performance analytics
- Advanced data connectors
- Real-time processing
- Machine learning models
- Predictive analytics
- Custom metrics framework
- Mobile applications
- Multi-tenant architecture
- Advanced security features
- Performance optimization
- Documentation & training
| Component | Open Source Cost | Commercial Alternative |
|---|---|---|
| Year 1 | $150K (dev + infra) | $300K+ (Logilica/LinearB) |
| Year 2 | $100K (maintenance) | $600K+ (scaling costs) |
| Year 3 | $120K (enhancements) | $900K+ (additional features) |
| 5-Year TCO | $550K | $1.5M+ |
-
Prerequisites
- Docker & Docker Compose
- Kubernetes cluster (optional)
- PostgreSQL database
- Redis instance
-
Development Setup
# Install dependencies make install # Start development environment make dev # Run tests make test
-
Production Deployment
# Deploy to Kubernetes make deploy-prod # Configure data sources make configure-sources
We welcome contributions! Please see our Contributing Guide for details.
This project is licensed under the MIT License - see the LICENSE file for details.
- 📚 Documentation
- 🐛 Issues
- 💬 Discussions
See our Project Roadmap for planned features and milestones.
Built with ❤️ by the Open Source Community