Skip to content

scverse/fast-array-utils

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Apr 29, 2025
60d5afb · Apr 29, 2025

History

66 Commits
Apr 1, 2025
Mar 7, 2025
Apr 29, 2025
Apr 29, 2025
Apr 29, 2025
Apr 29, 2025
Mar 11, 2025
Mar 11, 2025
Jan 28, 2025
Apr 22, 2025
Jan 27, 2025
Mar 7, 2025
Jan 27, 2025
Apr 15, 2025
Mar 7, 2025
Apr 29, 2025

Repository files navigation

pypi docs ci cov bench

fast-array-utils

usage

fast-array-utils supports the following array types:

  • numpy.ndarray
  • scipy.sparse.cs{rc}_{array,matrix}
  • cupy.ndarray and cupyx.scipy.sparse.cs{rc}_matrix
  • dask.array.Array
  • h5py.Dataset and zarr.Array
  • anndata.abc.CS{CR}Dataset (only supported by .conv.to_dense at the moment)

Use fast_array_utils.conv.to_dense to densify arrays and optionally move them to CPU memory:

from fast_array_utils.conv import to_dense

numpy_arr = to_dense(sparse_arr_or_mat)
numpy_arr = to_dense(dask_or_cuda_arr, to_cpu_memory=True)
dense_dask_arr = to_dense(dask_arr)
dense_cupy_arr = to_dense(sparse_cupy_mat)

Use fast_array_utils.conv.* to calculate statistics across one or both axes of a 2D array. All of them support an axis and dtype parameter:

from fast_array_utils import stats

all_equal = stats.is_constant(arr_2d)
col_sums = stats.sum(arr_2d, axis=0)
mean = stats.mean(arr_2d)
row_means, row_vars = stats.mean_var(arr_2d, axis=1)

installation

To use fast_array_utils.stats or fast_array_utils.conv:

(uv) pip install 'fast-array-utils[accel]'

To use testing.fast_array_utils:

(uv) pip install 'fast-array-utils[testing]'