Potęga punktu
Wygląd
Potęga punktu względem okręgu – liczba równa gdzie jest środkiem okręgu jego promienieniem[1][2]. Z definicji wynika, że
- dla punktu leżącego na zewnątrz okręgu. jest wtedy równe kwadratowi długości stycznej poprowadzonej z punktu do okręgu (rys. 1).
- dla punktu leżącego wewnątrz okręgu. jest liczbą przeciwną do kwadratu połowy najkrótszej cięciwy okręgu przechodzącej przez punkt (rys. 2).
- dla punktów leżących na okręgu.
Punkty o stałej potędze względem danego okręgu leżą na jednym okręgu.
Twierdzenie. Niech będzie dany punkt A.
Jeśli punkty będą punktami przecięcia dowolnej prostej przechodzącej przez punkt z okręgiem to
- jeśli A leży na zewnątrz okręgu,
- jeśli A leży wewnątrz okręgu.
Jeśli punkt jest punktem styczności prostej z okręgiem, to
- [3].
Dowód. Zgodnie z twierdzeniem o siecznych iloczyn jest taki sam niezależnie od wyboru cięciwy wyznaczonej przez Jeśli jedną z tych cięciw będzie średnica okręgu, to zajdzie równość Stąd teza.
W przypadku punktu leżącego wewnątrz okręgu dowód jest analogiczny.
Przypisy
[edytuj | edytuj kod]- ↑ П.С. Александров, А.И. Маркушевич, А.Я. Хинчин: Энциклопедия элементарной математики. Wyd. 1. T. 4: Геометрия. Москва. s. 454–458.
- ↑ potęga punktu względem okręgu, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2021-10-02] .
- ↑ H. S. M. Coxeter: Wstęp do geometrii dawnej i nowej. Warszawa: PWN, 1967, s. 97–98.
Linki zewnętrzne
[edytuj | edytuj kod]- Joanna Jaszuńska , Potęga punktu, „Delta”, luty 2012, ISSN 0137-3005 [dostęp 2024-10-30] .
- Bartłomiej Bzdęga , Potęga punktu względem okręgu, „Delta”, listopad 2019, ISSN 0137-3005 [dostęp 2024-11-02] .