Translocations involving FGFR2 gene fusions are common in cholangiocarcinoma and predict response to FGFR kinase inhibitors. However, response rates and durability are limited due to the emergence of resistance, typically involving FGFR2 kinase domain mutations, and to sub-optimal dosing, relating to drug adverse effects. Here, we develop biparatopic antibodies targeting the FGFR2 extracellular domain (ECD), as candidate therapeutics. Biparatopic antibodies can overcome drawbacks of bivalent monospecific antibodies, which often show poor inhibitory or even agonist activity against oncogenic receptors. We show that oncogenic transformation by FGFR2 fusions requires an intact ECD. Moreover, by systematically generating biparatopic antibodies targeting distinct epitope pairs in FGFR2 ECD, we identified antibodies that effectively block signaling and malignant growth driven by FGFR2-fusions. Importantly, these antibodies demonstrate efficacy in vivo, synergy with FGFR inhibitors, and activity against FGFR2 fusions harboring kinase domain mutations. Thus, biparatopic antibodies may serve as an innovative treatment option for patients with FGFR2-altered cholangiocarcinoma.
Saireudee Chaturantabut, Sydney Oliver, Dennie T. Frederick, Jiwan J. Kim, Foxy P. Robinson, Alessandro Sinopoli, Tian-Yu Song, Yao He, Yuan-Chen Chang, Diego J. Rodriguez, Liang Chang, Devishi Kesar, Meilani Ching, Ruvimbo Dzvurumi, Adel Atari, Yuen-Yi Tseng, Nabeel Bardeesy, William R. Sellers
BACKGROUND. Current methods for detecting esophageal cancer (EC) are generally invasive or exhibit limited sensitivity and specificity, especially for the identification of early-stage tumors. METHODS. We identified potential methylated DNA markers (MDM) from multiple genomic regions in a discovery cohort and a diagnostic model was developed and verified in a model-verification cohort of 297 participants. The accuracy of the MDM panel was validated in a multicenter, prospective cohort (n = 1429). The clinical performance of identified MDMs were compared with current tumor-associated protein markers. RESULTS. From 31 significant differentially methylated EC-associated regions identified in the marker discovery, we trained and validated a 3-MDM diagnostic model that could discriminate among EC patients and Non-EC volunteers in a multicenter clinical prospective cohort with a sensitivity of 85.5% and a specificity of 95.3%. This panel showed higher sensitivity in diagnosing early-stage tumors, with sensitivities of 56% for Stage 0 and 77% for Stage I, comparing with the performance of current biochemical markers. In population with high risk for EC, the sensitivity and specificity are 85.68% and 93.61% respectively. CONCLUSION. The assessment of tumor-associated methylation status in blood samples can facilitate non-invasive, and reliable diagnosis of early-stage EC, which warrants further development to expand screening and reduce mortality rates. TRIAL REGISTRATION NUMBER. ChiCTR2400083525.
Ruixiang Zhang, Yongzhan Nie, Xiaobing Chen, Tao Jiang, Jinhai Wang, Yuhui Peng, Guangpeng Zhou, Yong Li, Lina Zhao, Beibei Chen, Yunfeng Ni, Yan Cheng, Yiwei Xu, Zhenyu Zhu, Xianchun Gao, Zhen Wu, Tianbao Li, Jie Zhao, Cantong Liu, Gang Zhao, Jiakuan Chen, Jing Zhao, Gang Ji, Xiaoliang Han, Jie He, Yin Li
Genome-wide human genetic studies have identified inherited cis-regulatory loci variants that predispose to cancers. However, the mechanisms by which these germline variants influence cancer progression, particularly through gene expression and proteostasis control, remain unclear. By analyzing genomic data from a gastric cancer (GC) case-control study (2,117 individuals), focusing on the ubiquitin-specific protease (USP) family, we identify the single nucleotide polymorphism (SNP) rs72856331 (G>A) in the promoter region of the proto-oncogene USP47 as a putative susceptibility allele for GC (OR = 0.78, P = 0.015). Mechanistically, the risk allele G is associated with enhanced USP47 expression, mediated by altered recruitment of the transcription factor GLI3 and changes in the epigenetic status at promoter. CRISPR/Cas9-mediated single-nucleotide conversion into risk allele G results in increased GLI3 binding and subsequent USP47 upregulation. The depletion of GLI3 results in a reduction of cancer-related phenotypes, similar to those observed following USP47 knockdown. Furthermore, we identify Snai1 as a deubiquitination target of USP47, explaining USP47-dependent activation of epithelial-mesenchymal transition pathway and tumor progression. Our findings identify an important genetic predisposition that implicates the perturbation of transcription and proteostasis programs in GC, offering insights into prevention and therapeutic strategies for genetically stratified patients.
Bolin Tao, Zhenning Wang, Xuanyi Wang, Aixia Song, Jiaxian Liu, Jianan Wang, Qin Zhang, Zhaolin Chen, Zixian Wang, Wenjie Xu, Menghong Sun, Yanong Wang, Ping Zhang, Tao Xu, Gong-Hong Wei, Fei Xavier Chen, Mengyun Wang
Shwachman-Diamond syndrome (SDS) is characterized by neutropenia, exocrine pancreatic insufficiency, and bony abnormalities with an increased risk of myeloid neoplasia. Almost all cases of SDS result from biallelic mutations in SBDS. SBDS interacts with EFL1 to displace EIF6 from the 60S ribosomal subunit. Released EIF6 permits the assembly of ribosomal large and small subunits in the cytoplasm. Decreased EIF6 levels due to haploinsufficiency or missense mutations which lead to decreased protein expression may provide a somatic genetic rescue and anti-leukemic effects. We observed accumulation of EIF6 protein in sbds knockout (KO) zebrafish models, confirmed in patient-derived tissues, and correlated with changes in ribosome proteins and TP53 pathways. The mechanism of action for this adaptive response is unknown. To address this, we generated an eif6 zebrafish KO line which do not survive past 10 days post fertilization. We also created two mutants with low Eif6 expression, 5-25% of the wildtype levels, that can survive until adulthood. We bred them with sbds-null strains and analyzed their phenotype and biochemical properties. Low Eif6 levels reduced Tp53 pathway activation but did not rescue neutropenia in Sbds-deficient zebrafish. Further studies elucidating the interplay between SBDS, EIF6, TP53, and cellular stress responses offer promising insights into SDS pathogenesis, somatic genetic rescue, and therapeutic strategies.
Usua Oyarbide, Valentino Bezzerri, Morgan Staton, Christian Boni, Arish Shah, Marco Cipolli, Eliezer Calo, Seth J. Corey
Super-enhancers (SEs) are expansive cis-regulatory elements known for amplifying oncogene expression across various cancers. However, their role in cervical cancer (CC), a remarkable global malignancy affecting women, remains underexplored. Here we applied integrated epigenomic and transcriptomic profiling to delineate the distinct SE landscape in CC by analyzing paired tumor and normal tissues. Our study identifies a tumor-specific SE at the EFNA1 locus that drives EFNA1 expression in CC. Mechanically, the EFNA1 SE region contains consensus sequences for the transcription factor FOSL2, whose knockdown markedly suppressed luciferase activity and diminished H3K27ac enrichment within the SE region. Functional analyses further underlined EFNA1’s oncogenic role in CC, linking its overexpression to poor patient outcomes. EFNA1 knockdown strikingly reduced CC cell proliferation, migration, and tumor growth. Moreover, EFNA1 cis-interacted with its receptor EphA2, leading to decreased EphA2 tyrosine phosphorylation and subsequent activation of the Src/AKT/STAT3 forward signaling pathway. Inhibition of this pathway with specific inhibitors substantially attenuated the tumorigenic capacity of EFNA1-overexpressing CC cells in both in vitro and in vivo models. Collectively, our study unveils the critical role of SEs in promoting tumor progression through the FOSL2-EFNA1-EphA2-Src/AKT/STAT3 axis, providing new prognostic and therapeutic avenues for CC patients.
Shu-Qiang Liu, Xi-Xi Cheng, Shuai He, Tao Xia, Yi-Qi Li, Wan Peng, Ya-Qing Zhou, Zi-Hao Xu, Mi-Si He, Yang Liu, Pan-Pan Wei, Song-Hua Yuan, Chang Liu, Shu-Lan Sun, Dong-Ling Zou, Min Zheng, Chun-Yan Lan, Chun-Ling Luo, Jin-Xin Bei
Constitutively active mutations of KRAS are prevalent in non-small cell lung cancer (NSCLC). However, the relationship between these mutations and resistance to platinum-based chemotherapy and the underlying mechanisms remain elusive. In this study, we demonstrated that KRAS mutants confer resistance to platinum in NSCLC. Mechanistically, KRAS mutants mediate platinum resistance in NSCLC cells by activating ERK/JNK signaling, which inhibits ALKBH5 m6A demethylase activity by regulating post-translational modifications (PTMs) of ALKBH5. Consequently, the KRAS mutant leads to a global increase in m6A methylation of mRNAs, particularly DDB2 and XPC, which are essential for nucleotide excision repair. This methylation stabilized the mRNA of these two genes, thus enhancing NSCLC cells’ ability to repair platinum-induced DNA damage and avoid apoptosis, thereby contributing to drug resistance. Furthermore, blocking KRAS-mutant-induced m6A methylation, either by overexpressing a SUMOylation-deficient mutant of ALKBH5, or by inhibiting METTL3 pharmacologically, significantly sensitizes KRAS-mutant NSCLC cells to platinum drugs in vitro and in vivo. Collectively, our study uncovers a previously unrecognized mechanism that mediates KRAS mutant-induced chemoresistance in NSCLC cells by activating DNA repair through the modulation of the ERK/JNK/ALKBH5 PTMs-induced m6A modification in DNA damage repair-related genes.
Fang Yu, Shikan Zheng, Chunjie Yu, Sanhui Gao, Zuqi Shen, Rukiye Nar, Zhexin Liu, Shuang Huang, Lizi Wu, Tongjun Gu, Zhijian Qian
Steatotic liver enhances liver metastasis of colorectal cancer, but this process is not fully understood. Steatotic liver induced by a high-fat diet (HFD) increases cancer-associated fibroblast (CAF) infiltration and collagen and hyaluronic acid (HA) production. We investigated the role of HA synthase 2 (HAS2) in the fibrotic tumor microenvironment in steatotic liver using Has2ΔHSC mice, in which Has2 is deleted from hepatic stellate cells. Has2ΔHSC mice had reduced steatotoic liver-associated metastatic tumor growth of MC38 colorectal cancer cells, collagen and HA deposition, and CAF and M2 macrophage infiltration. We found low-molecular-weight HA activates yes-associated protein (YAP) in cancer cells, which then releases connective tissue growth factor to further activate CAFs for HAS2 expression. Single-cell analyses revealed a link between CAF-derived HAS2 with M2 macrophages and colorectal cancer cells through CD44; these cells associated with exhausted CD8 T cells via programmed death-ligand 1 and programmed cell death protein 1. The HA synthesis inhibitors reduced steatotic liver-associated metastasis of colorectal cancer, YAP expression, CAF and M2 macrophage infiltration. In conclusion, steatotic liver modulates a fibrotic tumor microenvironment to enhance metastatic cancer activity through a bidirectional regulation between CAFs and metastatic tumors, enhancing the metastatic potential of colorectal cancer in the liver.
Yoon Mee Yang, Jieun Kim, Zhijun Wang, Jina Kim, So Yeon Kim, Gyu Jeong Cho, Jee Hyung Lee, Sun Myoung Kim, Takashi Tsuchiya, Michitaka Matsuda, Vijay Pandyarajan, Stephen J. Pandol, Michael S. Lewis, Alexandra Gangi, Paul W. Noble, Dianhua Jiang, Akil Merchant, Edwin M. Posadas, Neil A. Bhowmick, Shelly C. Lu, Sungyong You, Alexander M. Xu, Ekihiro Seki
Merkel Cell Carcinoma (MCC) is an aggressive neuroendocrine cutaneous malignancy arising from either ultraviolet-induced mutagenesis or Merkel cell polyomavirus (MCPyV) integration. Despite extensive research, our understanding of the molecular mechanisms driving the transition from normal cells to MCC remains limited. To address this knowledge gap, we assessed the impact of inducible MCPyV T antigens on normal human fibroblasts by performing RNA sequencing. Our data uncovered changes in expression and regulation of Wnt signaling pathway members. Building on this observation, we bioinformatically evaluated various Wnt pathway perturbagens for their ability to reverse the MCC gene expression signature and identified pyrvinium pamoate, an FDA-approved anthelminthic drug known for its anti-tumor activity in other cancers. Leveraging transcriptomic, network, and molecular analyses, we found that pyrvinium targets multiple MCC vulnerabilities. Pyrvinium not only reverses the neuroendocrine features of MCC by modulating canonical and non-canonical Wnt signaling but also inhibits cancer cell growth by activating p53-mediated apoptosis, disrupting mitochondrial function, and inducing endoplasmic reticulum stress. Finally, we demonstrated that pyrvinium reduces tumor growth in an MCC mouse xenograft model. These findings offer a new understanding of the role of Wnt signaling in MCC and highlight the utility of pyrvinium as a potential treatment for MCC.
Jiawen Yang, James T. Lim, Paul Victor Santiago Raj, Marcelo G. Corona, Chen Chen, Hunain Khawaja, Qiong Pan, Gillian D. Paine-Murrieta, Rick G. Schnellmann, Denise J. Roe, Prafulla C. Gokhale, James A. DeCaprio, Megha Padi
Serotonin (5-HT) is a neurotransmitter that has been linked to tumorigenesis. Whether and how 5-HT modulates cells in the microenvironment to regulate tumor metastasis remains to be largely unknown. Here, we demonstrate that 5-HT is secreted by neuroendocrine prostate cancer (NEPC) cells to communicate with neutrophils and to induce neutrophil extracellular traps (NETs) in the liver, which in turn facilitates the recruitment of disseminated cancer cells and promotes liver metastasis. 5-HT induces histone serotonylation (H3Q5ser) and orchestrates histone citrullination (H3cit) in neutrophils to trigger chromatin decondensation and facilitate the formation of NETs. Interestingly, we uncover in this process a reciprocally reinforcing effect between H3Q5ser and H3cit and a crosstalk between the respective writers TGM2 and PAD4. Genetic ablation or pharmacological targeting of TGM2, or inhibiting 5-HT transporter (SERT) with the FDA-approved antidepressant drug fluoxetine reduces H3Q5ser and H3cit modifications, suppresses NETs formation, and effectively inhibits NEPC, small cell lung cancer, and thyroid medullary cancer liver metastasis. Collectively, the 5-HT-triggered NETs production highlights a new targetable neurotransmitter-immune axis in driving liver metastasis of neuroendocrine cancers.
Kaiyuan Liu, Yingchao Zhang, Genyu Du, Xinyu Chen, Lingling Xiao, Luyao Jiang, Na Jing, Penghui Xu, Chaoxian Zhao, Yiyun Liu, Huifang Zhao, Yujiao Sun, Jinming Wang, Chaping Cheng, Deng Wang, Jiahua Pan, Wei Xue, Pengcheng Zhang, Zhi-Gang Zhang, Wei-Qiang Gao, Shu-Heng Jiang, Kai Zhang, Helen He Zhu
Mutated tumor cells undergo changes in chromatin accessibility and gene expression, resulting in aberrant proliferation and differentiation, although how this occurs is unclear. HMGA1 chromatin regulators are abundant in stem cells and oncogenic in diverse tissues; however, their role in colon tumorigenesis is only beginning to emerge. Here, we uncover a previously unknown epigenetic program whereby HMGA1 amplifies Wnt signaling during colon tumorigenesis driven by inflammatory microbiota and/or Adenomatous polyposis coli (Apc) inactivation. Mechanistically, HMGA1 “opens” chromatin to upregulate the stem cell regulator, Ascl2, and downstream Wnt effectors, promoting stem and Paneth-like cell states while depleting differentiated enterocytes. Loss of just one Hmga1 allele within colon epithelium restrains tumorigenesis and Wnt signaling driven by mutant Apc and inflammatory microbiota. However, HMGA1 deficiency has minimal effects in colon epithelium under homeostatic conditions. In human colon cancer cells, HMGA1 directly induces ASCL2 by recruiting activating histone marks. Silencing HMGA1 disrupts oncogenic properties, whereas reexpression of ASCL2 partially rescues these phenotypes. Further, HMGA1 and ASCL2 are coexpressed and upregulated in human colorectal cancer. Together, our results establish HMGA1 as an epigenetic gatekeeper of Wnt signals and cell state under conditions of APC inactivation, illuminating HMGA1 as a potential therapeutic target in colon cancer.
Li Z. Luo, Jung-Hyun Kim, Iliana Herrera, Shaoguang Wu, Xinqun Wu, Seong-Sik Park, Juyoung Cho, Leslie Cope, Lingling Xian, Bailey E. West, Julian Calderon-Espinosa, Joseph Kim, Zanshé Thompson, Isha Maloo, Tatianna Larman, Karen L. Reddy, Ying Feng, Eric R. Fearon, Cynthia L. Sears, Linda Resar